# VRDI

## Variable Rate Drip Irrigation

The **next** generation of drip irrigation

Almond board of Australia, Nov. 2016

Dr. Itamar Nadav, Netafim R&D



#### **ITAMAR NADAV**



#### Project Manager & Chief Agronomist, Research & Development Department, Netafim

Itamar gained his Ph.D. studying at the Soil & Water Sciences Department, Faculty of Agriculture in Rehovot, Hebrew University of Jerusalem. He published several papers on soil water distribution under water repellent conditions. For the last nine years, he has been project manager and chief agronomist at the R&D department of NETAFIM. Itamar's main responsibilities include soil sensors implementation, testing and development and precision agriculture implementation. His work includes experimentations in advanced drip irrigation technology involving remote sensing and precision agriculture as well as advanced modelling for irrigation scheduling.



#### **Uniform application**

- Applying the same rate (amount) across the field
- Over/under applications
- Low application efficiency (high costs)



#### Variable rate application

- Applying different rates (amounts) across the field
- Adequate application for each zone
- high application efficiency (lower costs)



## VARIABLE RATE APPLICATIONS

- Fertilizers
- Pesticides
- Herbicides
- Tillage
- Seedling
- Irrigation

4



## Management zones





## WHAT'S IN THE PICTURE?



## Lesson of the day: higher resolution is better!



## **OBJECTIVES**

- VRDI aims to eliminate/reduce spatial variability
- Variability in yield
- Variability in quality

#### Causes for variability:

- Sloped plots
- Different types of soils
- Soil depth
- other





## TARGET CROPS

- Perennial crops
- Vineyards
- Citrus
- Almonds
- Avocado

. . . . . .





## MEASURING VARIABILITY

- Yield map
- Remote sensing (NDVI)
- Soil texture (VERIS)
- Proxy sensors





## **DIFFERENT APPROACHES FOR VRI**

The capitalistic approach (increase variability)



The socialistic approach (reduce variability)





## **CASE STUDY: VINEYARD**

- 2006 Syrah variety vineyard.
- 1.2 hectare.
- Variable vegetation, yield and quality in the same plot.





26 - 30 30.1 - 33

33.1 - 36

36.1 - 39

39.1 - 42

42.1 - 45 45.1 - 48

48.1 - 51 51.1 - 53

53.1 - 58

## **PRE-VDRI RESULTS**





#### **PRE-VDRI RESULTS**





#### **PRE-VDRI RESULTS**





VRDI-the next Generation of drip irrigation

## THE PROBLEM: VARIABILITY

# The solution: VRDI



1 irrigation zone

12 irrigation zones



## **VRDI SUB PLOTS**

- Dividing the plot into 12 sub irrigation
  zones (A1...A6; B1...B6).
- Each subplot can be irrigated separately.
- Each irrigation subplots is irrigated to achieve goal yield and quality.









## SYSTEM INSTALLATION

 Left: system head is levels with ground surface

Right: no sign for the installation...







## THE VRDI SYSTEM COMPONENTS



#### Software

- Remote sensing
- Algorithm
- DSS



#### Hardware

- Driplines
- Valves
- Controllers

Variable rate irrigation according to the spatial variability in the field



### **KC-NDVI MODELS**



## **PIXELS IRRIGATION MODEL**

- Kc=0.15+(NDVI\*1.01\*0.1)
- ETc = ETo x Kc
- Irrigation per pixel: ETc x Stress factor (0.2-0.5)



- Compensated irrigation: ETc x Stress factor (0.2-0.5) x  $\frac{Ref. NDVI}{Pixcel_i NDVI}$   $\begin{bmatrix} 5\\ 2 \end{bmatrix} \times 1$
- Early irrigation at low NDVI zones



## NDVI VS. IRRIGATION (2015)

Larger plants (high NDVI) get less water than smaller plants (low NDVI)





## **PHYSIOLOGICAL MEASUREMENTS-LAI**



22 VRDI-the next Generation of drip irrigation

## PHYSIOLOGICAL MEASUREMENTS- WATER POTENTIAL









**NETAFIM** 

24 VRDI-the next Generation of drip irrigation

## **IRRIGATION SCHEDULING**





## VARIABILITY IN A CITRUS PLANTATION

- 3 ha of clementine citrus plantation
- Sloped field with variable soil depth.
- Variable tree size and yield





## VARIABILITY IN AN CITRUS





## **YIELD 2014**



28 VRDI-the next Generation of drip irrigation

## **DIVIDING TO SUBPLOTS**

- The plot was divided into 28 sub plots
- Each plot can be separately irrigated





## **1<sup>ST</sup> YEAR SUMMERY**

- Increased number of fruits
- Increased tree size
- Reduced NDVI differences.





## E. & J. GALLO

- Livingston Ranch, CA.
- 23 acres
- 96 irrigation pixels
- Highly variable



## **NEXT STEPS**

- 40 acres of VRDI in almonds (wonderful, ABC)
- Additional 200 acres of VRDI in vineyard (E&J Gallo)
- 5 acre of VRDI in Greece
- VRDI in other crops and regions (Australia, South Africa)
- System improvements, optimization and cost reduction



# THANK YOU



## CASE STUDY: VINEYARD

- 2006 Syrah variety vineyard.
- 3.6 hectare.
- Variable vegetation, yield and quality in the same plot.





