5th Australian Almond Research & Development Forum & Field Day

Managing almond production in a variable and changing climate Dane Thomas, South Australian Research and Development Institute

October 30th - 31st, 2019

HOSTED BY: Imond Board of Australia

Stoller SPONSORED BY: Stoller Australia Hort Innovation SUPPORTED BY: Hort Innovation Australia

ESEARCH & DEVELOPMENT FORUM & FIELD DAY

australiar

Project AL14006 (2015-2019) Funded by HIA, ABA, IRSP-SARMS, Government of South Australia

Themes

1. Identify weather and climate risks and Management options

- 2. Field trials
- 3. Develop crop development (Phenology) model

1. Identify weather and climate risks and Management options

Outputs

Booklets for five almond growing regions describing the regions climate strengths and challenges for almond growing.

They describe the year-to-year variability in climate and compare these to other locations;

the use of seasonal climate drivers to aid management decisions;

and of the altered chances of undesirable conditions in projected future climates.

The booklets detail management options for each risk

The Riverland Climate for Almond production: Analysis of strengths and challenges.

Dane Thomas, Peter Hayman SARDI, Adelaide, Australia 21 May 2019

https://www.horticulture.com.au/globalassets/ hort-innovation/resource-assets/al14006climate-strengths-and-challenges---riverland.pdf

Main weather and climate risks from almond perspective

RISK	IMPACT	EXPECTATIONS
Accumulated cold	Insufficient chill Non-synchronous flowering	Decline in winter chill Uncertain impact on synchronicity of flowering
Night temperature	Frost	Decline on longer term although may increase in shorter term
Accumulated heat	Greater growing degree days affecting development	Increased mean temperature will increase heat accumulation
Day temperature	Heatwaves (hot days and hot nights) Too cold for effective pollination	Increase
Accumulated rain Accumulated evapotranspiration	Insufficient irrigation water or winter rain	Likely that water declines while evapotranspiration increases Prudent to plan for water constraints and higher evaporative demand
Rain and evaporation	Rainy days near harvesting Excessive rain and humidity leading to disease	Uncertain

Government of South Australia

Primary Industries and Regions SA RESEARCH AND

DEVELOPMENT

Trends and learning from other locations

Your location Black line shows history Coloured ribbon shows variability (deciles)

Other locations

Coloured bars shows variability at these locations

Colours represent deciles. 1 is lowest 10% of years, 10 is highest 10% of years. Deciles calculated for 20 years from 1986 to 2005

Mildura

Accumulated heat

Alter development lifecycle (phenology) Generally poor understanding of critical temperature thresholds

Heatwaves

Irrigation Leaf surface covers Growth regulators Soil structure

Accumulated rain and evapotranspiration

Prudent to expect a water constrained future with higher evaporative demand, and fluctuations in the quantity of irrigation water

Irrigation scheduling and efficiency

Orchard design

Soil quality

Heatwaves

Pests and diseases

2. Field trials

4 years, 4 orchards, 3 to 4 sites (meso-sites) within each orchard

Climate Crop development (phenology) Yield Quality (kernel size, deformities)

Phenology

Lower elevation meso-sites were cooler

Later flowering in warmer winters (less chill)

Flowering was 1 day later for each reduction of 3 chill portions. Very rough approximation of decline by 8 chill portions per 1°C mean temperature warming

Phenology

Hotter spring and summer led to earlier hull split

Hull split was 8 days earlier per 1°C warmer

Climate

The relationship between yield and temperature was not conclusive. In some orchards a larger number of hot days reduced yield.

Higher yield when winter chill was higher.

RESEARCH AND

DEVELOPMEN'

Primary Industries and Regions SA

Climate

Warmer conditions during December reduced yield from buds developing at this time. That is, yield was lower in the following year.

3. Crop development (phenology)

Outputs

- Phenology standard
- How to assess phenology

Excel based phenology model. User input of temperature with calculated output of dates of flowering, hull split and harvest

https://www.horticulture.com.au/growers/help-your-business-grow/researchreports-publications-fact-sheets-and-more/almond-phenology-model-spreadsheet/

Assessing Phenology of Almonds Dane Thomas, SARDI, Adelaide, Australia Joseph Connell, University of California Cooperative Extension Emeritus Advisor, Butte County, California 28 May 2018

https://www.horticulture.com.au/globalassets/ hort-innovation/resource-assets/al14006assessing-phenology-in-almonds.pdf

https://www.horticulture.com.au/globalassets/ hort-innovation/resource-assets/al14006phenology-standard-for-almonds.pdf

3. Crop development (phenology)

Observed date vs predicted dates. Black line is 1:1 line (i.e. perfectly predicted)

Phenology in future climates

Thanks and acknowledgements

Project AL14006 (2015-2019) Funded by HIA, ABA

and IRSP-SARMS

SARDI

Dane Thomas Peter Hayman Mark Skewes Victor Sadras Almond growers CMV Farms Larila Almonds Select Harvest Walker Flat Almonds

