

Resilient root systems for the Australian almond industry

Everard J Edwards & Mandy Walker Shuang-Xi Zhou, Harley Smith, Peter Clingeleffer & Rob Walker

24th October 2017

CSIRO AGRICULTURE AND FOOD

www.csiro.au

SARMSII Administered:

Resilient root systems

Limited knowledge around almond root systems/rootstocks and potential role in improving resource use efficiency.

Root systems provide:

- acquisition of both water and nutrients,
- barrier to soil stresses,
- signalling mechanisms that influence shoot growth and function.

Improved management and genetics of root system offer an opportunity to improve almond production and production efficiency.

CSIRO projects & major outputs

Better tree performance and water use efficiency through root system resilience:

- Assessment of the resilience of *Prunus* rootstocks to abiotic stresses.
- Optimised management for root systems and rootstocks.

Resilient Rootstocks for Australian Almond Industry:

- Survey of root knot nematodes (RKN)
- Screen new rootstocks for resistance to RKN
- Tool kit for developing perfect markers to stress resilience for pre-screening new rootstocks

Better tree performance and water use efficiency through root system resilience

Everard J Edwards & Shuang-Xi Zhou

Rapid abiotic stress screening

Aim

Development of rapid screens for Prunus rootstocks:

- tolerance of water stress,
- tolerance of high soil conductivity.

Typical rootstock trials:

- very long-term,
- results may be specific to site (soils/climate)
- potentially impacted by orchard management decisions.

Rapid glasshouse screening with 1st year ungrafted material:

- 'agnostic' to growing conditions,
- can be repeated/compared across multiple sites/seasons,
- should represent 'inherent' response of genotype,
- but ignore scion interactions and risk not representing response of mature trees.

Screening principal used

Method chosen assesses the impact of stress on *relative* growth rate (RGR) to generate an index of stress tolerance.

- Growth is the ultimate measure of a plant's performance,
- but absolute growth rates (e.g. new biomass per day) are strongly affected by plant size (due 个 leaf area).

RGR = increase in biomass per unit of biomass per day

• but even relative growth rates are affected by plant size (due to requirement for support tissue).

stress index = RGR under stress /
RGR under control conditions

Glasshouse rootstock screening

- May-July 2015 Brights Hybrid, Cornerstone, Felinem, GF677, Monegro, Nemaguard, Viking.
- 2015/16 Barrier 1, Cadaman, Garnem, Atlas, K86.
- Jan-Feb 2017 Bright's Hybrid,
 Controller 6, Controller 7, Controller
 9.5, Cornerstone, Garnem, GF677,
 Rootpac 20, Rootpac 40.

Preliminary stress indices: need validation!

		Drought	Control RGR
		Index	(d ⁻¹)
May-July 2015*	Bright's Hybrid		0.0021
	Cornerstone		0.0051
	Felinem		0.0022
	GF 677		0.0053
	Monegro		0.0059
	Nemaguard		0.0068
	Viking		0.0051
November – December 2015	Barrier 1		0.0266
January 2016-Febuary 2016	Cadaman		0.0488
	Garnem		0.0267
April 2016	Atlas		0.0572
May- June 2016	K86		0.0266
January-Feburary 2017	Bright's Hybrid		0.0231
	Controller 6		0.0207
	Controller 7		0.0208
	Controller 9.5		0.0204
	Cornerstone		0.0223
	Garnem		0.0176
	GF 677		0.0142
	Rootpac 20		0.0173
	Rootpac 40		0.0085

^{*}Drought was 33% of control.

Preliminary stress indices: need validation!

		Drought Index	Control RGR (d ⁻¹)
May-July 2015*	Bright's Hybrid		0.0021
	Cornerstone		0.0051
	Felinem		0.0022
	GF 677		0.0053
	Monegro		0.0059
	Nemaguard		0.0068
	Viking		0.0051
November – December 2015	Barrier 1		0.0266
January 2016-Febuary 2016	Cadaman		0.0488
	Garnem		0.0267
April 2016	Atlas		0.0572
May- June 2016	K86		0.0266
January-Feburary 2017	Bright's Hybrid		0.0231
	Controller 6		0.0207
	Controller 7		0.0208
	Controller 9.5		0.0204
	Cornerstone		0.0223
	Garnem		0.0176
	GF 677		0.0142
	Rootpac 20		0.0173
	Rootpac 40		0.0085

^{*}Drought was 33% of control.

Preliminary stress indices: need validation!

		Drought Index	Conductivity Index	Control RGR (d ⁻¹)
May-July 2015*	Bright's Hybrid			0.0021
	Cornerstone			0.0051
	Felinem			0.0022
	GF 677			0.0053
	Monegro			0.0059
	Nemaguard			0.0068
	Viking			0.0051
November – December 2015	Barrier 1			0.0266
January 2016-Febuary 2016	Cadaman			0.0488
	Garnem			0.0267
April 2016	Atlas			0.0572
May- June 2016	K86			0.0266
January-Feburary 2017	Bright's Hybrid			0.0231
	Controller 6			0.0207
	Controller 7			0.0208
	Controller 9.5			0.0204
	Cornerstone			0.0223
	Garnem			0.0176
	GF 677			0.0142
	Rootpac 20			0.0173
	Rootpac 40			0.0085

^{*}Drought was 33% of control.

Understanding almond root systems

Utilising DEDJTR managed site established in mature orchard at CMV Farms Lindsay Point.

Reduced N and water application in factorial set-up (+N+H2O, -N+H2O, +N-H2O, -N-H2O).

Aims:

- establish phenology of root system (Nemaguard); timing of root growth, ageing of roots, root lifespan / demography / turnover, etc.
- determine the impact of reduced water and N application on root phenology and phenotype (mass, length, distribution),
- measure actual water uptake and impact of reduced irrigation, link to DEDJTR determined parameters (e.g. canopy size).

Minirhizotrons for root phenology & turnover

Minirhizotrons for root phenology & turnover

Imaging of 50+ windows per tube every three weeks.

Two tubes per rep per scion (96 total).

Minirhizotrons for root phenology & turnover Depth Date Windows are repeatedly imaged over time. Can see development of root growth.

Soil coring for root biomass

Field experiment: root biomass

No significant effect on over-wintering root biomass after 1 yr. Root length/morphology also determined.

Data collected in 2015 (treatments not yet applied) & 2016.

Field experiment: root biomass distribution

Summary

Rootstock screening:

- Eighteen rootstock genotypes screened + three repeats,
- Water deficit impacts typically larger than effects of (likely) high soil conductivities,
- Results will be published as 3-5 level tolerance index following validation.

Shared field experiment:

- Two+ seasons of minirhizotron images collected,
- Two+ sets of winter root cores collected (no treatment impact after one season),
- One+ season of whole tree water use monitoring (data not shown),
- Above will be combined with DEDJTR canopy data and ¹⁵N tracer experiments to track N use efficiency.

Resilient Rootstocks for Australian Almond Industry

Mandy Walker & Harley Smith

Seed funding

Short term (10 month) project funded through South Australian River Murray Sustainability Program no. 2 (SARMSII) with industry support from the Almond Board of Australia

Concluded: 28th February 2017

Key objectives

Survey root knot nematodes across Murray Basin

Test new rootstocks for resistance to RKN

Develop rootstock identification method

Establish tool kit for marker development

Ultimate aim

Identify genes and markers to prescreen new rootstocks

Root knot nematodes cause extensive damage to susceptible *Prunus* root systems

Root knot nematode

- Galls decrease root function
- Decline in productivity

Root knot nematode in the orchard

- ~15% decrease in yield & vigour in *Prunus*
- Rootstocks in replanting

Root knot nematode survey

Root knot nematode screening assay

Optimized method to maintain and produce infectious root knot nematodes

Rootpacs less susceptible to a root knot nematode

	Variety	Parentage	Classification	
	Garnem	P. dulcis x P. persica	Resistant	
	Rootpac 20	P. besseyi x P. cerasifera	Low susceptible	
	Nemaguard	P. persica	Low susceptible	
	Rootpac 40	P. dulcis x P. persica	Low susceptible	
	Cornerstone	P. dulcis x P. persica	Medium susceptible	
	Krymsk 86	P. persica x P. cerasifera	High susceptible	
	Barrier 1	P. persica x P. davidiana	High susceptible	
	Bright's Hybrid	P. dulcis x P. persica	High susceptible	
	GF677	P. dulcis x P. persica	High susceptible	

New methods for rootstock verification

- "Proof of concept" of rootstock identification
- DNA markers not linked to a particular trait
- Selected across different chromosomes
- Differentiates 16 tested cultivars

• Collaboration with Prof Diane Mather, Uof A

Ranking rootstocks for salt tolerance

- Ungrafted rootstock plants
- Planted in sand/perlite
- Given 21 days of mixed chloride
- 100mM chloride

Salinity experiment in glasshouse.

Layout of salinity experiment. Each variety was represented by a number, 4 reps for each line, harvest date and either salt (red) or control (blue).

Rootpacs are good salt excluders

Preliminary glasshouse study showed that Rootpac 20 & 40 have superior sodium exclusion and that Rootpac 40 has superior chloride exclusion compared to other widely-used rootstocks

Faster smarter markers for selected traits

- Important for decision-making on importing new rootstocks for Australia
- Important for predicting which rootstocks to plant/replant in a given location/conditions

Developed in SARMSII Future project

Tool kit

- DNA libraries with large fragments of DNA
- Gene targets from other species
- Embryo rescue techniques
- Prunus transformation techniques
- Mapping populations to check markers

Future opportunities

- 1. **Screen** rootstocks with root knot nematode populations isolated from Willunga, Waikerie and Robinvale
- 2. Effect of **temperature** on root knot nematode **resistance**
- 3. **Ring nematode:** Ectoparasitic feeding reduces feeder roots, *P. syringae* predisposes peach trees to "Peach Tree Short Life (PTSL)"
- 4. Rootstock **verification** tool
- 5. Fast **smar**t technology to test **resilience** to interaction of abiotic stresses
- 6. **Perfect markers** for abiotic stress **resilience** and **resistance** to root knot nematode

Faster smarter screening for abiotic stress impacts and interactions

- Future Plant Accelerator screen
 - Rootstock/scion combinations
 - Different water, heat and salt conditions
 - Measures growth, inferred water use efficiency

Summary of outcomes

- Reliable, robust and resilient rootstocks selected in Faster Smarter ways
- Save on field evaluation costs and
- Faster commercial exploitation of superior rootstocks

Acknowledgements

Tim Preusker & staff

- Alex Lawlor
- Annette Boettcher
- Bronwyn Smithies

CSIRO Agriculture & Food

Everard Edwards Research Team Leader

- t +61 8 8303 8649
- e everard.edwards@csiro.au
- w www.csiro.au

Brady Smith (deceased)

- Adelle Craig
- Mahmood Hassan
- Shashi Goonetilleke
- Norma Morales
- Deidre Blackmore
- Debra McDavid

CSIRO Agriculture & Food

Mandy Walker Research Team Leader

- t +61 8 8303 8629
- e mandy.walker@csiro.au
- w www.csiro.au

ADD BUSINESS UNIT/FLAGSHIP NAME

www.csiro.au

SARMSII Administered:

