

17th Australian Almond Conference

Pullman Hotel Melbourne, Albert Park, Victoria November 8th - 10th, 2016

Lance Beem, Beem AgroSciences

Almond Plant Growth

Regulation & Pest Protection

Strategies

17th Australian Imond Conference lovember 8th = 10th, 2016

President, Beem Consulting/ Beem AgroSciences Corp USA

Lance's company Beem Agro Sciences conducts contract research, consulting and demonstrations focused on development of new pesticides, fertilisers, natural products and generally regarded as safe compounds. His business is designed to integrate conventional/and non-conventional plant regulation, nutrition and pest management practices. He has extensive expertise in herbicides, insecticides, fungicides, plant hormones, plant extracts, antioxidants, glycoside chemistry. He consults with large and small farmers, companies and individuals seeking registrations. Prior to beginning his own business, Lance was engaged by Stoller Enterprises for numerous years as a Market Development Manager in major and minor crops.

Presentation Outline

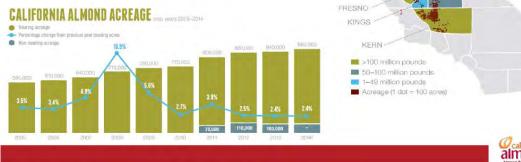
Introduction of Beem AgroSciences

Plant Hormones in Almond Production (eg. Roots/Shoots/Bloom)

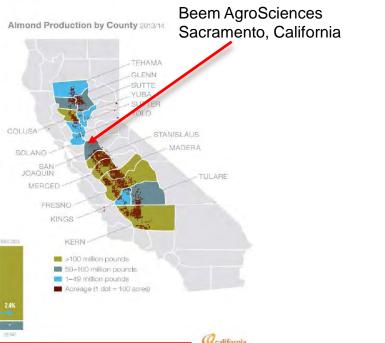
Results of Research with Plant Growth Regulating Compounds in Almond Trials.

Introduction California Almond Production

California Almond Region



Almond Importance in California


The Scope of the California Almond Industry

Almond orchards span 500 miles from north to south through California's Central Valley.

- 2014 total acreage: 1,020,000 A
- 2014 bearing acreage: 870,000 A
- · 3 growing regions: North, Central, South
- 97,000 almond industry-related jobs generated in Central Valley, 104,000 statewide

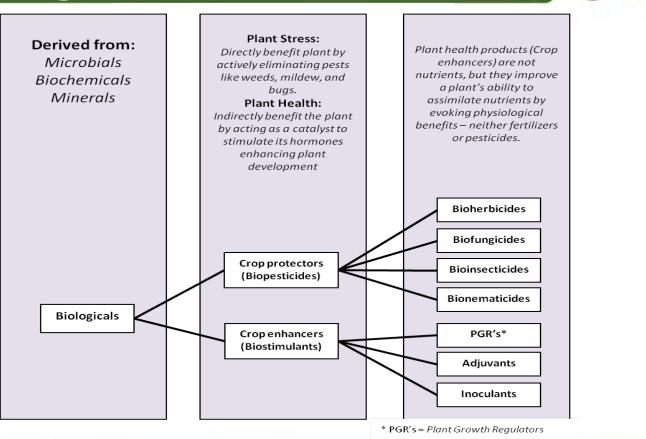
100% of Almond Production in USA

17th Australian Almond Conference November 8th - 10th, 2016

Who We Are Beem AgroSciences

Who and What We Do

17th Australian Imond Conference November 8th - 10th, 2016



Beem AgroSciences Corp

- 1. Investigations into Pesticides, Plant Growth Regulators and Biologicals
- 2. Benefit Cost Analysis of Biologicals
- 3. Greenhouses & Research Farms
- 4. Replicated Field Trials & Grower Validation Trials.

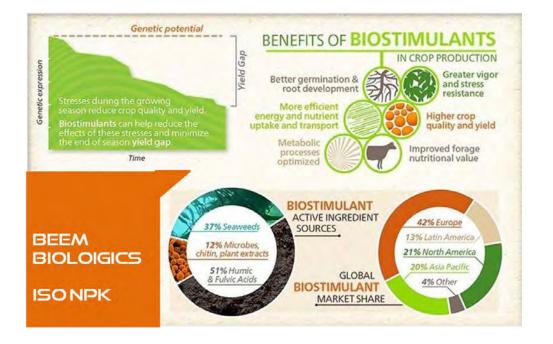
17th Australian

November 8th = 10th, 2016

REGISTERED BIOPESTICIDE ACTIVE INGREDIENTS BY GEOGRAPHY

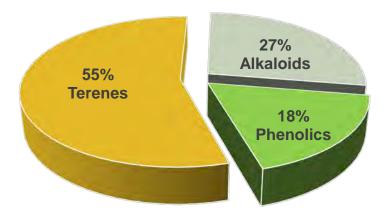
Geography	Registered active ingredients	Date
U.S.	~400	As of early 2013
China	85	As of 2011
EU	79	As of early 2013
Brazil	26	As of August 2011
India	15	As of 2008

Source: U.S. EPA. Agrow Informa UK. Biopesticides: Pest Management and Regulation. Embrada Environment, African Journal of

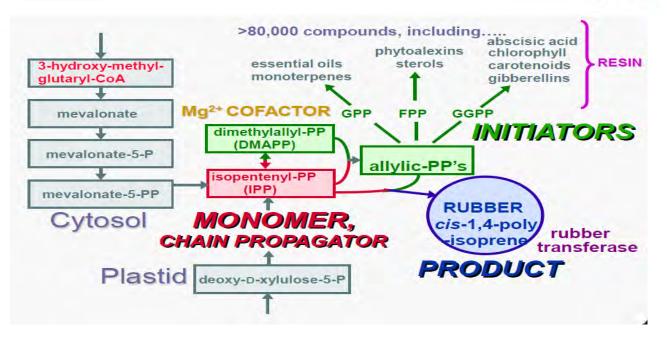

TIME AND COST INVESTMENT FOR FOUR AGRICULTURAL PRODCTS

	Туре	Time to Market	Cost of Development
	Traditional chemical pesticide	10 years	\$260 million
	Genetically engineered trait	8-13 years	\$140 million
	Biopesticide	3 years	\$8-15 million*
	Biostimulant	(1-2 years)	\$1.5-3 million

Source: CropLife America / ECPA study, CropLife International study 2011, BPIA, Marrone Bio Innovations

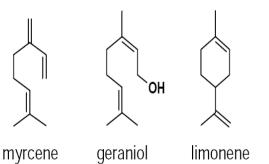


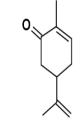
UNDERSTANDING How BIOSTIMULANTS Fit



It has long been known that the basic unit of most secondary plant metabolites, including terpenes, consists of isoprene, a simple hydrocarbon molecule. The term terpene usually refers to a hydrocarbon molecule while terpenoid refers to a terpene that has been modified, such as by the addition of oxygen. Isoprenoids are, therefore, the building blocks of other metabolites such as plant hormones, sterols, carotenoids, rubber, the phytoltail of chlorophyll, and turpentine.

17th Australian Imond Conference Jovember 8th - 10th, 2016




The Isoprenoid Pathway – a plant based chemical factory

Examples Isoprenes Molecules Interact with Plant Hormones

The isoprene units are always linked 1,4 and head-to-tail in terpenes (the preferred addition orientation even in mineral acid), but are often linked further in bizarre ways to produce rings. Oxygen functional groups are often included, as might be expected from hydrolysis of the pyrophosphate linkage. The diversity of compounds produced is amazing, but the pattern of one methyl group every fourth carbon reveals their origin. The simplest, monoterpenes, consist of 2 isoprene units. The stereoisomers of these simplest terpenes provide interesting illustrations of the stereospecificity of odor receptors; for example (+)-(S)-carvone is responsible for the odor of caraway and (-)-(R)-carvone the odor of spearmint.

carvone

camphor

Plant Hormones In Almond Production

What are Plant Hormones?

17th Australian Imond Conference lovember 8th = 10th, 2016

Chemical Messengers

Frits Went, 1903-1990

".....characterized by the property of serving as chemical messengers, by which the activity of certain organs is coordinated with that of others".

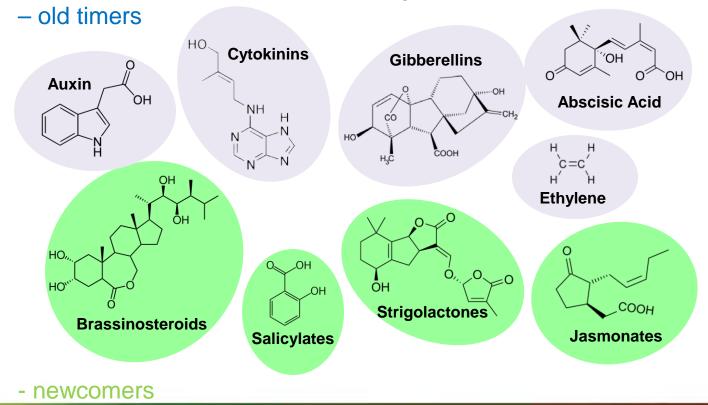
-Frits Went and Kenneth Thimann, 1937

Kenneth Thimann, 1904-1997

Plant Hormones

17th Australian Imond Conference lovember 8th = 10th, 2016

Plant hormones regulate cellular activities (division, elongation and differentiation), pattern formation, organogenesis, reproduction, sex determination, and responses to abiotic and biotic stress.


Notholaena standleyi © 2008 Carl Rothfels

Old & New Plant Hormones

Chemical Messengers

17th Australian

Imond Conference November 8th = 10th, 2016

Plant Hormone Roles

17th Australian Imond Conference ovember 8th = 10th, 2016

How hormones work (25% all plant genes)

Hormonal control of vegetative development Auxin Cytokinins Strigolactones Gibberellins **Brassinosteroids** Hormonal control of reproduction Ethylene Abscisic Acid Hormonal responses to stress Salicylates **Jasmonates Cross-regulation of hormonal effects**

Five Original Plant Hormones

Chemical Messengers

- Auxin: The Activator Growth Hormones • Cytokinin: The Dispatcher • Gibberellic Acid: The Sizer
- Stress Ethylene: The Regulator Hormones Abscisic Acid (ABA): The Terminator
- Plant Hormones regulated Genes
- Plant Hormones respond to Environment.
- Plant Hormones are often Conjugated.
- Plant Hormones are often Eliminated Oxidation

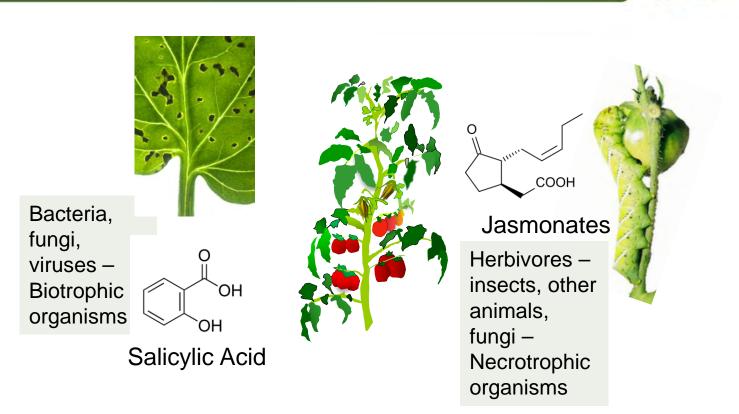
Hormonal responses > abiotic stress

17th Australian Imond Conference ovember 8th - 10th, 2016

Photo oxidative stress High tempature stress Water deficit, drought Soil salinity

Air pollution

Wounding and mechanical damage


Cold and freezing stress

Plants' lives are very stressful.....

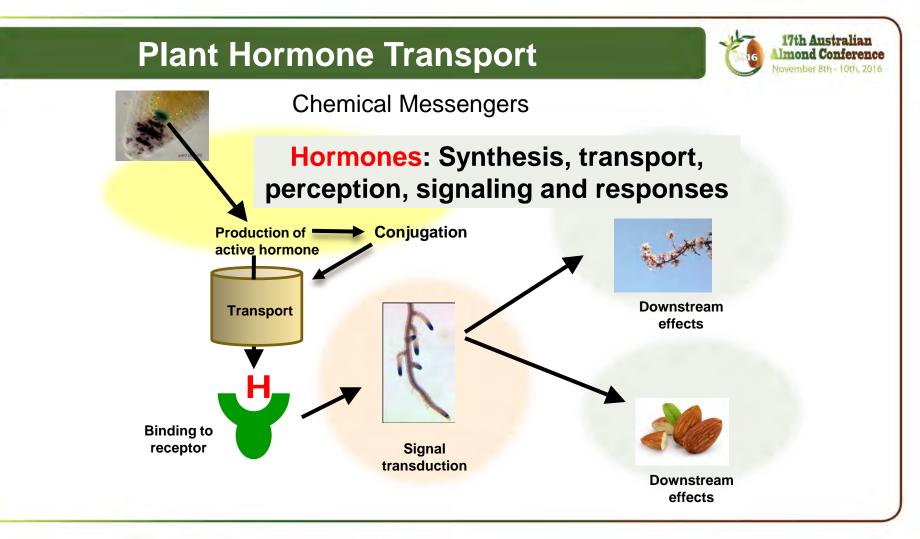
ABA and Ethylene help plants respond to stress.

Reprinted by permission from Macmillan Publishers, Ltd. Nature Chemical Biology. Vickers, C.E., Gershenzon, J., Lerdau, M.T., and Loreto, F. (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress Nature Chemical Biology 5: <u>283</u> - <u>291</u> Copyright 2009.

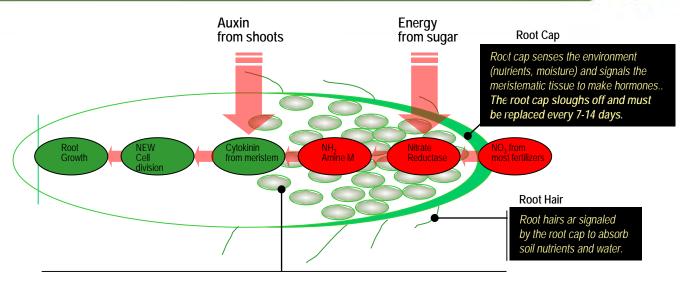
Hormonal responses > biotic stress

17th Australian

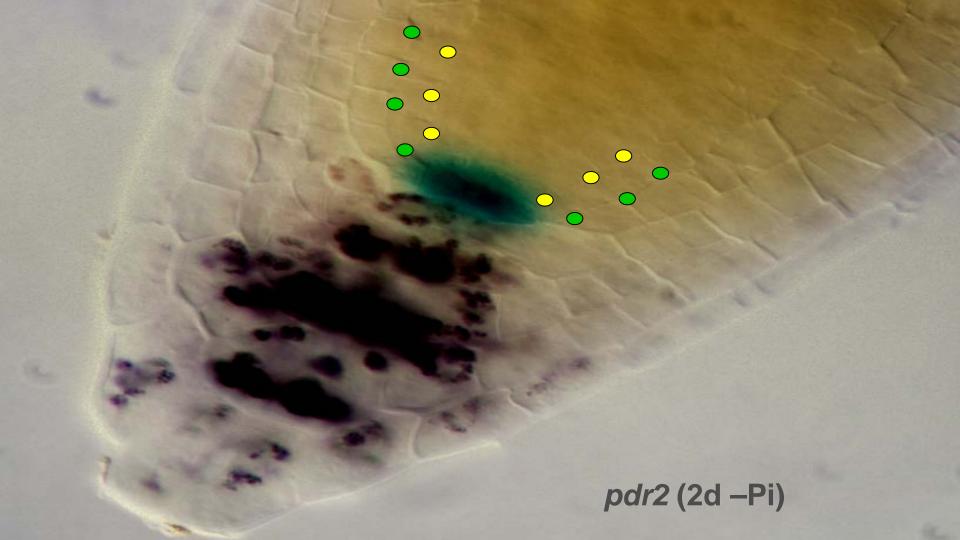
Imond Conference


Plant Hormone Roles

17th Australian mond Conference ovember 8th = 10th, 2016


How hormones work (25% all plant genes)

Hormonal control of vegetative development Auxin Cytokinins Strigolactones Gibberellins **Brassinosteroids** Hormonal control of reproduction Ethylene Abscisic Acid Hormonal responses to stress Salicylates **Jasmonates Cross-regulation of hormonal effects**

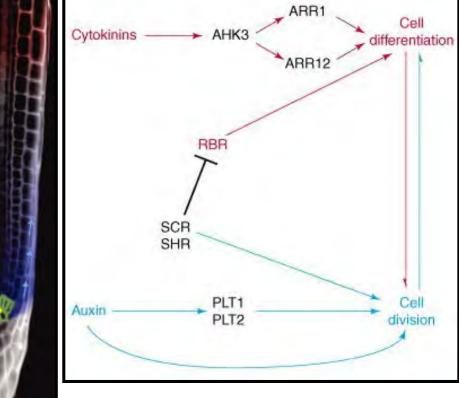

Root Tips "Brains" Of The Plant

17th Australian Almond Conference November 8th - 10th, 2016

Meristematic Root Tissue

Meristematic root tissue responds to the root cap to produce hormones (cytokinin, giberellic acid, & abscisic acid), which together with auxin from the shoots, maintain cell division for root tip growth. If the root tips die, the plant's "brain" dies and it looses its ability to control hormone cycles and nutrient availability. The plant will loose vigor and eventually die. It is important to feed and maintain a healthy root system.

Regulatory Network Controlling Root Meristem Size and Activity


17th Australian Imond Conference Vovember 8th - 10th, 2016

Division Zone

Stem Cell

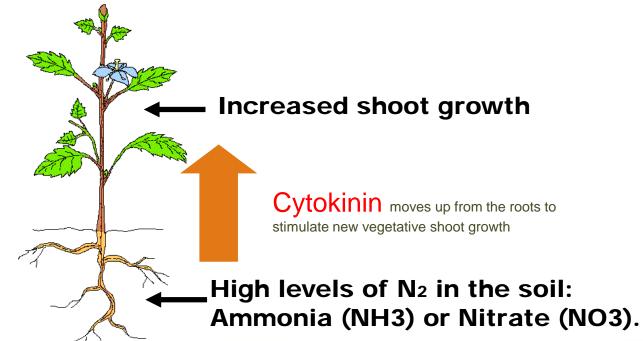
Niche

Dello-loio et al. (2008) Curr Opn Plant Biol 11:23-27

Root Tips "Brains" Of The Plant

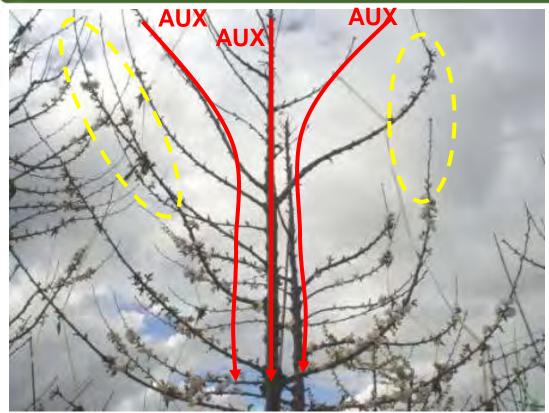
17th Australian Imond Conference November 8th - 10th, 2016

Almond Lifecycle: Roots are a high source of Cytokinins


You should think twice about planting conditions

Cytokinin Hormone

Internal C:Nitrogen Levels

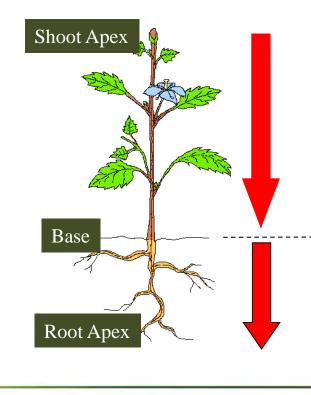

Regulating N2 influences rooting success cuttings

Auxin Movement

17th Australian Imond Conference Jovember 8th - 10th, 2016

Auxins are made daily in the meristem of the buds & shoots of almond trees & move downward at a speed of approximately 20 cm an hour.

There are 100,000 more auxin in the shoot tips than root tips. But without auxin in root tips there would be no plant growth.


Both labeled sugar and auxin move rapidly through the plant at velocities of ca. 16-20 cm h(-1) with closely similar, exponential profiles.

Plant Hormone Movement

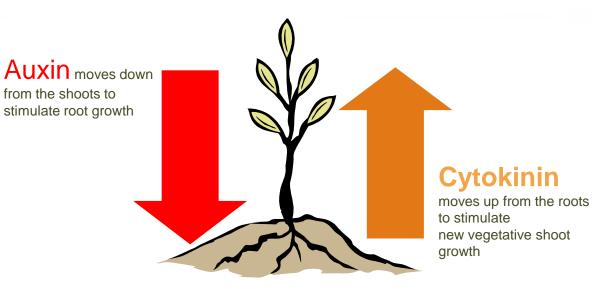
17th Australian Imond Conference ovember 8th = 10th, 2016

Auxin movement- "Polar"

In shoots: Auxins move basipetally

(apex to base)

In roots:


Auxins move acropetally

(base to apex)

Vegetative Growth

17th Australian Imond Conference ovember 8th - 10th, 2016

Where auxin and cytokinin meet, vegetative buds are formed.

Vegetative buds are differentiated into reproductive buds by ethylene and GA. Ethylene and GA synthesis are stimulated by a *higher auxin to cytokinin ratio*.

Hormone Balance

Auxin + Cytokinin stimulate cell division giving birth to new cells

Cell Division: is important for establishing the type and number of cells needed for normal plant development, vigorous growth and yield **<u>quality</u>**

Plant Hormone Roles

17th Australian Imond Conference ovember 8th = 10th, 2016

How hormones work (25% all plant genes)

Hormonal control of vegetative development Auxin Cytokinins **Strigolactones** Gibberellins **Brassinosteroids** Hormonal control of reproduction Ethylene Abscisic Acid Hormonal responses to stress Salicylates **Jasmonates Cross-regulation of hormonal effects**

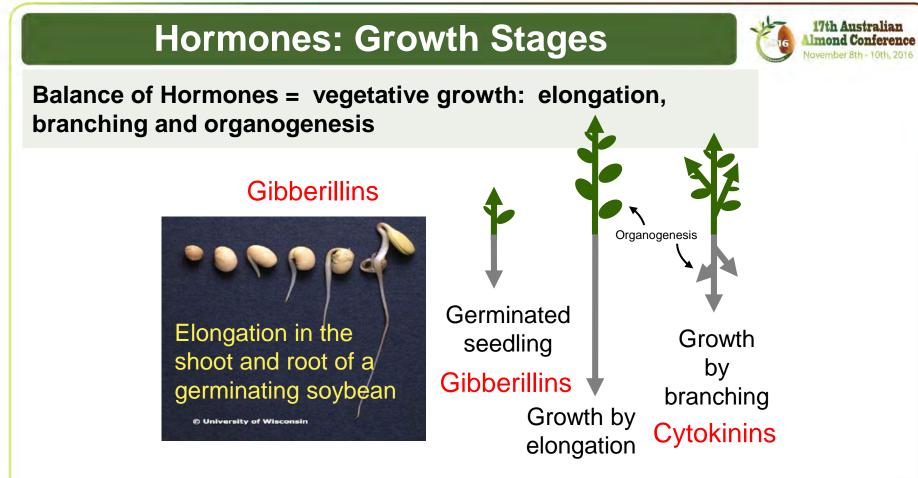
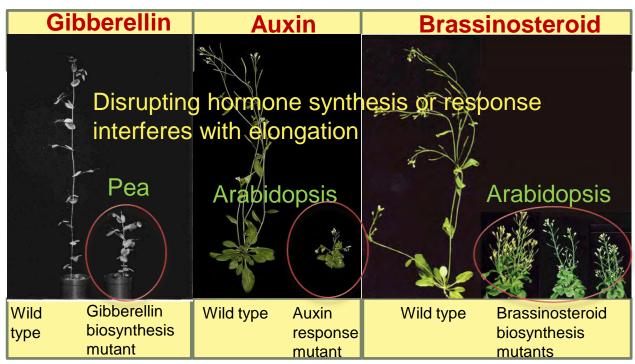


Photo courtesy of Shawn Conley


Stress Generate Oxidation Plant Hormone Activity

Hormones: Deficencies

Lester, D.R., Ross, J.J., Davies, P.J., and Reid, J.B. (1997) Mendel's stem length gene (*Le*) encodes a gibberellin 3β-hydroxylase. Plant Cell 9: <u>1435-1443</u>;Gray WM (2004) Hormonal regulation of plant growth and development. PLoS Biol 2(9): <u>e311</u>; Clouse SD (2002) <u>Brassinosteroids</u>: The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists. doi: 10.1199/tab.0009

Phosphorus Reduction

17th Australian Imond Conference

13 mm

.Pi

+Pi

Phosphate (Pi) Sensing in Root Development

+Pi

Cell Division Marker

CYCB1::GUS

G1 G2 G2

-Pi

Increasing Ethylene

17th Australian Imond Conference lovember 8th - 10th, 2016

low nitrateshigh nitratesProper Auxin to Cytokinin ratioIncreases Ethylene

Nitrate Reductase Enzyme

17th Australian Imond Conference ovember 8th = 10th, 2016

17th Australian Almond Conference November 8th = 10th, 2016

Auxins – promote adventitious rooting

Effect of the "rooting hormone", Auxin = IBA, on hardwood cuttings of the tropical legume, *Inga fueillei*

Plant Hormone Manipulation During Almond Bloom

Plant Hormone Roles

17th Australian mond Conference ovember 8th = 10th, 2016

How hormones work (25% all plant genes)

Hormonal control of vegetative development Auxin Cytokinins Strigolactones Gibberellins **Brassinosteroids** Hormonal control of reproduction Ethylene Abscisic Acid Hormonal responses to stress Salicylates **Jasmonates Cross-regulation of hormonal effects**

Brassinoids, Gibberillins & Cytokinin During Almond Bloom

The effect of three plant bioregulators on pollen germination, pollen tube growth and fruit set in almond [*Prunus dulcis* (Mill.) D.A. Webb] cvs. Non Pareil and Carmel

- <u>Segundo Maita</u>, ,
- <u>Carlos Sotomayor</u>

Show more

http://dx.doi.org/10.1016/j.ejbt.2015.07.004

Cytokinins =KN Gibberellins = GA3 Brassinosteroids = BL

PGR Almond Impact on Pollen Tube

17th Australian Umond Conference November 8th - 10th, 2016

Percentage of pollen germination in vitro on Non Pareil and Carmel almond cultivars after 4 h, in the presence of Plant Bio-Regulators in the 2013 and 2014 growing seasons.

Table 1.				
Treatments	cv. Non Pareil		cv. Carmel	
	2013	2014	2013	2014
Control	90.0 d	90.9 c	89.2 c	91.9 b
BL 10 mg L ⁻¹	95.3 a	97.7 a	95.5 ab	95.1 a
BL 30 mg L ⁻¹	92.4 cd	94.4 abc	92.6 bc	94.0 ab
BL 50 mg L ⁻¹	91.0 d	91.4 bc	90.4 c	93.6 ab
GA₃ 10 μL L ⁻¹	90.9 d	91.3 bc	92.4 bc	94.3 ab
GA₃ 30 μL L ⁻¹	92.6 bcd	95.2 abc	96.7 ab	94.8 ab
GA₃ 50 μL L ⁻¹	95.1 ab	96.6 ab	96.9 a	95.1 a
KN 10 μL L ⁻¹	90.7 d	92.8 abc	92.9 abc	92.8 ab
KN 30 μL L ^{- 1}	92.0 cd	94.5 abc	93.3 abc	94.3 ab
KN 50 μL L ⁻¹	94.1 abc	95.9 abc	94.4 abc	94.7 ab

Means followed by the same letter are not statistically different according to the Tukey-Kramer test ($p \le 0.05$).

PGR Impact on Almond Pollen Tube

Inth Australian

Pollen tube length in Non Pareil and Carmel almond cultivars after 8 h, in the presence of Plant Bio-Regulators in the 2013 and 2014 growing seasons (values in μ m).

Table 2.				
Treatments	cv. Non Pareil		cv. Carmel	
	2013	2014	2013	2014
Control	937.1 f	945.0 h	917.7 e	921.3 g
BL 10 mg L ⁻¹	1067.4 b	1078.8 b	1117.0 c	1100.1 e
BL 30 mg L ⁻¹	1032.6 c	1043.0 d	1059.7 d	973.1 f
BL 50 mg L ⁻¹	963.9 e	971.6 f	921.3 e	964.0 f
GA ₃ 10 μL L ⁻¹	977.0 e	971.7 f	1183.0 b	1144.6 d
GA₃ 30 μL L ⁻¹	1000.0 d	997.7 e	1199.4 b	1168.1 c
GA ₃ 50 μL L ⁻¹	1100.6 a	1096.0 a	1226.6 ab	1183.5 b
KN 10 μL L ⁻¹	942.0 f	947.3 h	1198.4 b	1179.9 bc
KN 30 μL L ⁻¹	965.1 e	960.6 g	1212.5 ab	1186.2 b
KN 50 μL L ⁻¹	1056.8 b	1066.9 c	1243.4 a	1215.9 a
Means followed by the same letter are not statistically different according to the Tukey-Kramer test ($p \le 0.05$).				

PGR Impact on Almond Fruit Set

17th Australian Imond Conference lovember 8th - 10th, 2016

Percentage of fruit set in Non Pareil almond cultivar at 60 days after full bloom, with Plant Bio-Regulators treatments at two phenological stages (2013 and 2014).

Table 3.				
Treatments	Pink Bud		Fallen Petals	
	2013	2014	2013	2014
Control	17.1 d	16.7 d	15.6 c	16.5 c
BL 10 mg L ⁻¹	24.6 ab	22.3 bcd	21.7 abc	22.6 ab
BL 30 mg L ⁻¹	22.5 abcd	19.2 cd	19.5 abc	20.4 abc
BL 50 mg L ⁻¹	22.1 abcd	18.9 cd	17.8 bc	16.7 bc
GA₃ 10 μL L ^{- 1}	23.7 ab	26.2 ab	19.8 abc	22.5 abc
GA₃ 30 μL L ⁻¹	27.1 a	28.0 ab	26.2 a	22.7 ab
GA₃ 50 μL L ⁻¹	18.0 cd	22.7 bcd	20.6 abc	19.8 abc
KN 10 μL L ⁻¹	20.1 bcd	22.7 bcd	22.1 ab	19.8 abc
KN 30 μL L ⁻¹	23.5 abc	24.8 abc	23.7 ab	25.6 a
KN 50 μL L ⁻¹	25.8 ab	31.0 a	22.1 ab	24.0 a
Means followed by the same letter are not statistically different according to the Tukey–Kramer test ($p \leq 0.05$).				

Plant Hormone Roles

17th Australian mond Conference ovember 8th = 10th, 2016

How hormones work (25% all plant genes)

Hormonal control of vegetative development

Auxin

Cytokinins

Strigolactones

Gibberellins

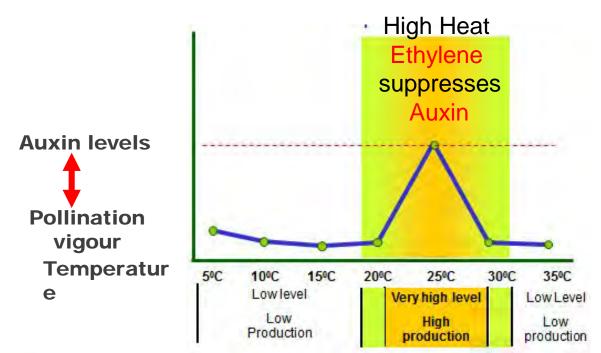
Brassinosteroids

Hormonal control of reproduction

Ethylene

Abscisic Acid Hormonal responses to stress

Salicylates


Jasmonates

Cross-regulation of hormonal effects


Temperature and Pollination

Problems from adverse temperatures are due to a lack of growth hormone production in the plant

Reducing poor pollination

What is Ethylene?

• Ethylene is a natural plant hormone that affects many processes

- Nut/Fruit Set
- Flower Development
- Fruit Ripening
- Flower/Fruit Abscission

Plant Health Regulating Compounds During Almond Bloom

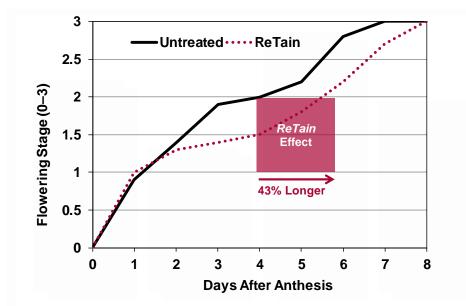
Valent Anti-Etyhlene PGR Use During Almond Bloom

17th Australian Imond Conference Jovember 8th = 10th, 2016

 ReTain reduces ethylene evolution in almond flowers and delays flower and stigmatic senescence. This effect results in flowers being viable longer, which allows more time for pollination to occur. Increasing set and potential yield.

How to Use ReTain on Almonds

17th Australian Imond Conference November 8th - 10th, 2016

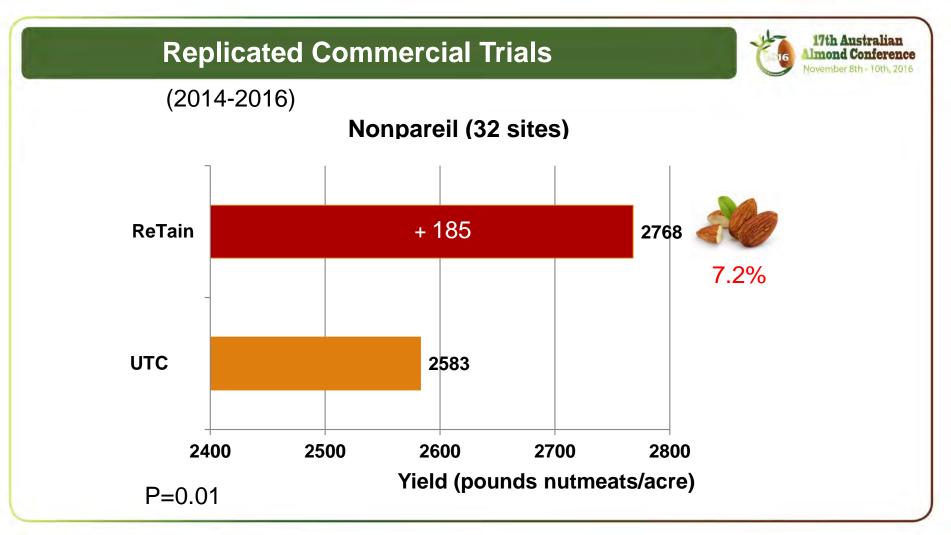

Use Rate	1 water-soluble pouch/A (333 grams)	
Application Method	Ground (air blast sprayer)	
Timing	From 10% bloom to petal fall (recommended timing: 30–60% bloom)	
REI / PHI	12 hours / 0 hours (none required)	
Rainfastness	8 hours after application	
MRLs	No residue restrictions for export markets	

ReTain Extends Pollination Period

ReTain effectively delayed bloom senescence in almonds, thus improving the chances for pollination by 43%

Source: Valent

ReTain Extends the Pollination Period


17th Australian Imond Conference ovember 8th = 10th, 2016

Trial Location: Firebaugh, CA ReTain applied on 2/17/16, 1 bag/A in 100 gpa Pictures taken on 2/23/16 (6 DAT), Variety: Monterey

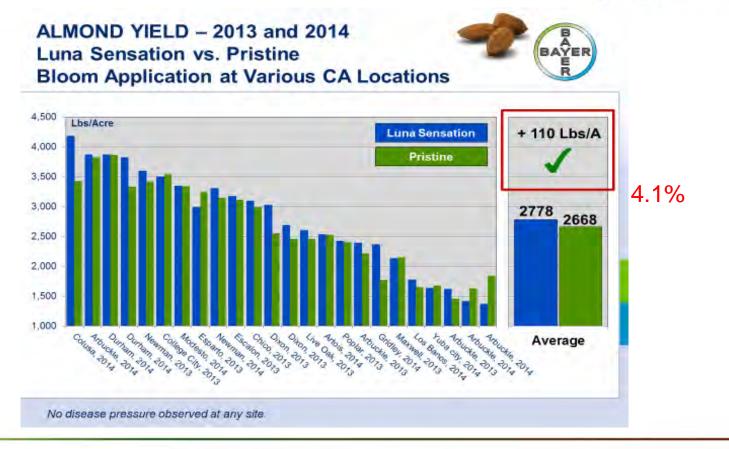
ReTain effectively delayed bloom senescence in almonds, thus improving the chances for pollination by 43%

Source: Valent

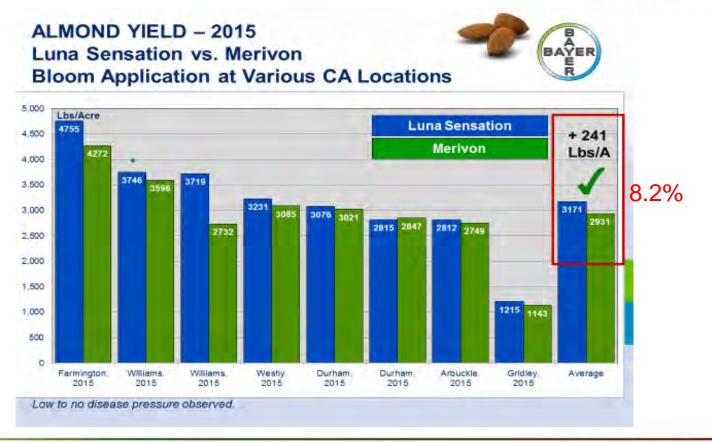
What is Ethylene?

• Ethylene is a natural plant hormone that affects many processes

- Nut/Fruit Set
- Flower Development
- Fruit Ripening
- Flower/Fruit Abscission


Bayer & BASF Fungicides During Almond Bloom

Suppresses Ethylene, Increases Mitocondria


17th Australian Imond Conference November 8th = 10th, 2016

Suppresses Ethylene, Increases Mitocondria

17th Australian Imond Conference November 8th - 10th, 2016

Stoller's Anti-Oxidant Nutrient Flower Power

Flower Power

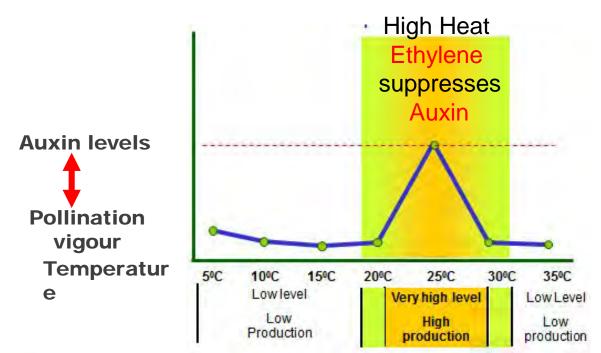
17th Australian Imond Conference ovember 8th = 10th, 2016

- Flower Power[™] is a complex micronutrient and antioxidant with growth enhancing co-factors resulting in increased fruit set and crop yield.
- Flower Power increases Auxin, the hormone that dictates pollination, in every flower for stronger pollination. Poor pollination is a common problem on many perennial trees, vines, bushes, and multiple fruiting crops resulting in lower yields.

Flower Power

- Boron 3.8%
- Copper 0.1%
- Molybdenum 0.02%
- Zinc 5.0%
- Proprietary Co-Factor

17th Australian Imond Conference ovember 8th = 10th, 2016


Nutrients and hormonal activity

- B Boron reduces IAA oxidase.
- In other words, it increases the half-life of IAA. This is extremely important in the pollination stage.
 - If temperatures are too hot
 - If temperatures are too cool
 - If soils are too dry
- Boron deficiencies will cause poor pollination and physiological problems with seed formation in any crop.

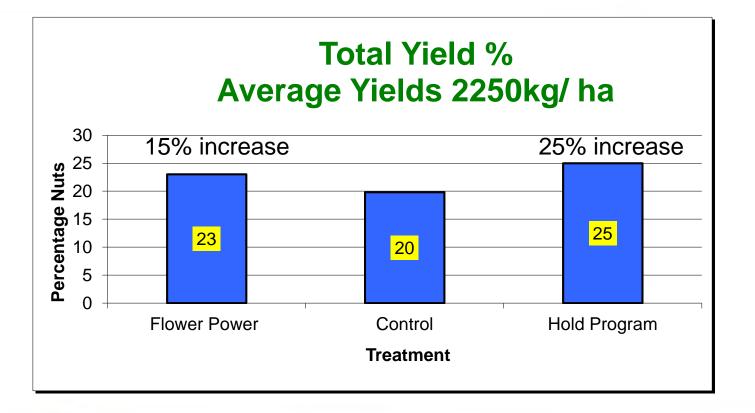

Temperature and Pollination

Problems from adverse temperatures are due to a lack of growth hormone production in the plant

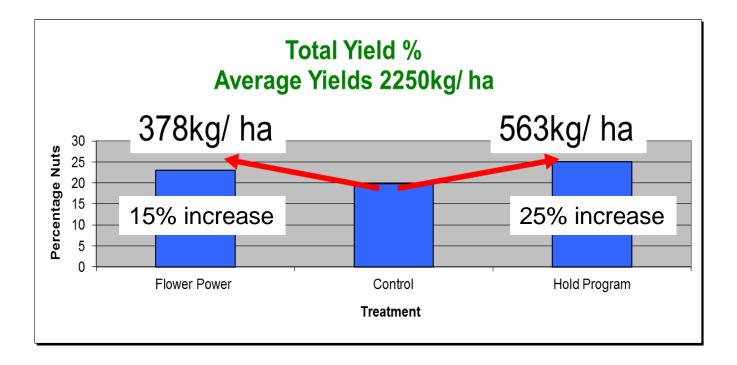
Reducing poor pollination

Nutrients and hormonal activity of plants

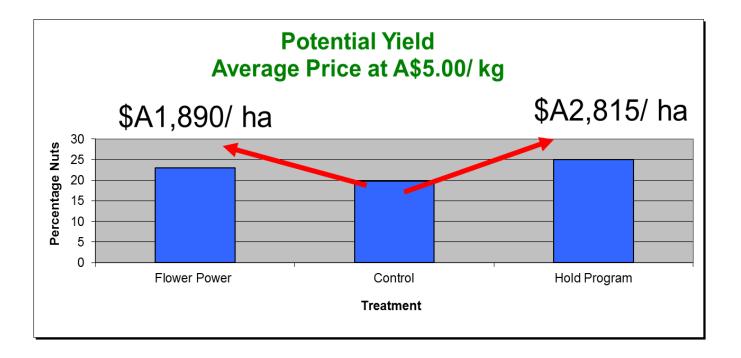
17th Australian mond Conference wember 8th = 10th, 2016


 Zn - Zinc is necessary to convert Trypthophan to Auixn = IAA. The lack of Indole Acetic Acid in new plant tissue (new leaves) inhibits cell division and causes new leaves to become yellow and small.

Treatments:

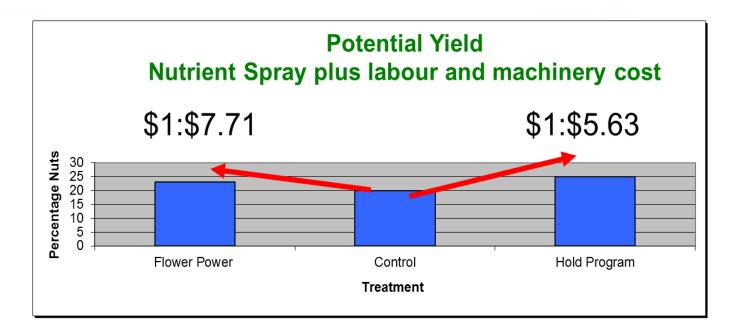

- Hold Program X-Press at 4 litres/ ha + Action 5 at 4 litres/ ha
- Flower Power at 2.5 litres/ ha and SETT at 2.5 litre/ha
- Control

Almond yield increases


17th Australian

Almond yield increases

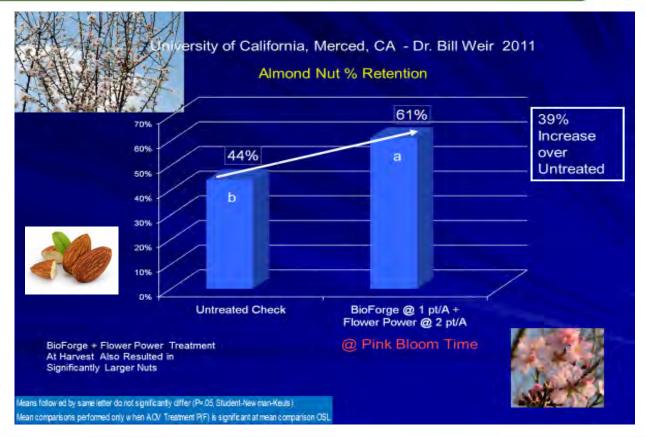
17th Australian Almond Conference November 8th = 10th, 2016


Almond yield increases

17th Australian

Imond Conference

ROI almond yield increases



17th Australian Imond Conference

Flower Power Almond Trial Calif.

17th Australian Imond Conference November 8th - 10th, 2016

Stoller's Sugar Mover

Sugar Mover Analysis

- Sugar Mover
- Boron 10%
- Moly

0.13%

 Plus Stoller's Co-Factors which enhance Auxin & Cytokinin Balance in Fruit Buds

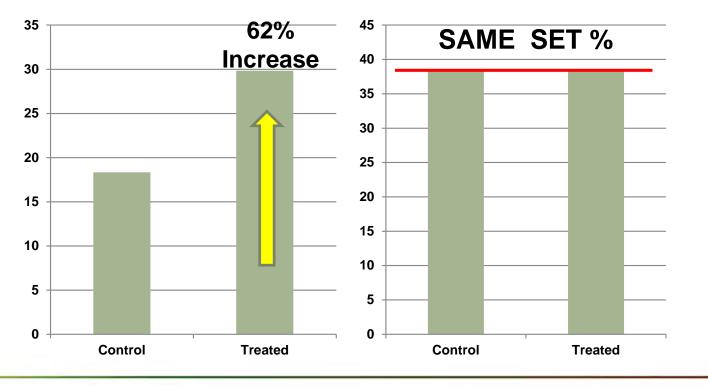
Sugar Mover Analysis

- Redirects plant food (sugar, carbohydrates, metabolites) from the apical meristems in the leaves to the buds, fruit and roots
- Shorten internode length
- Used to increase sugar levels and bulking prior to harvest

Stoller's Sugar Mover Trials Walker Flat, South Australia

Sugar Mover Trial Aim

 Increase Flower Bud Development for the following season in Almonds. 17th Australian Imond Conference


- Increase yield by 15% in the following years harvest.
- Can be applied with current spray program, compatible with fungicides.

Stoller's Sugar Mover Trial

Buds per metre stem

Flower set %


Trees without Sugar Mover

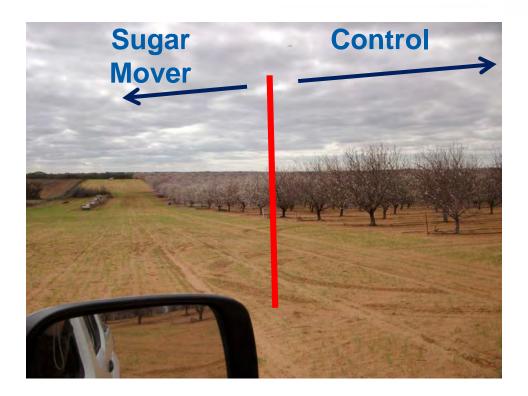
17th Australian Almond Conference November 8th - 10th, 2016

Trees with Sugar Mover

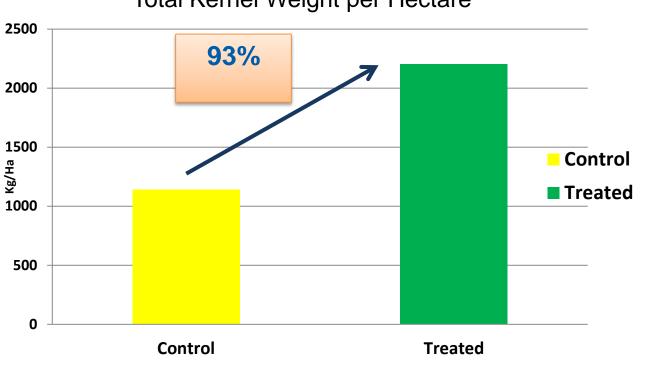
Trees without Sugar Mover

Reduced flower buds

Trees with Sugar Mover


17th Australian Imond Conference ovember 8th - 10th, 2016

Flower buds on new wood


Grower View – Sugar Mover

Stoller's Sugar Mover trial

17th Australian Imond Conference ber 8th = 10th, 2016

Total Kernel Weight per Hectare

Cost-Benefit of Sugar Mover

Sugar Mover application cost \$ 60 per Ha (product only)

Actual yield increase of = 1046 Kg

Price per kg = \$3.50Total return per Ha = \$3661.00Return on Investment = 61 to 1

Final results after 2011 - 2012 harvest

Stoller's Sugar Mover Trials Virginia, South Australia

Sugar Mover demonstration

17th Australian Imond Conference ovember 8th - 10th, 2016

Results summary

Rootstock/Block	Treated Untreated	Average Fruit set	Improvement (treated>control)
Almond - Robert Rd	Treated	27.78	17.5%
Almond - Robert Rd	Control	23.64	
Hybrid — 99 Planting	Treated	33.93	43.6%
Hybrid — 99 Planting	Control	24.24	
Nemaguard – Homeblock 1	Treated	23.91	134.2%
Nemaguard – Homeblock 1	Control	10.21	

Sugar Mover demonstration

17th Australian Almond Conference November 8th = 10th, 2016

Observations

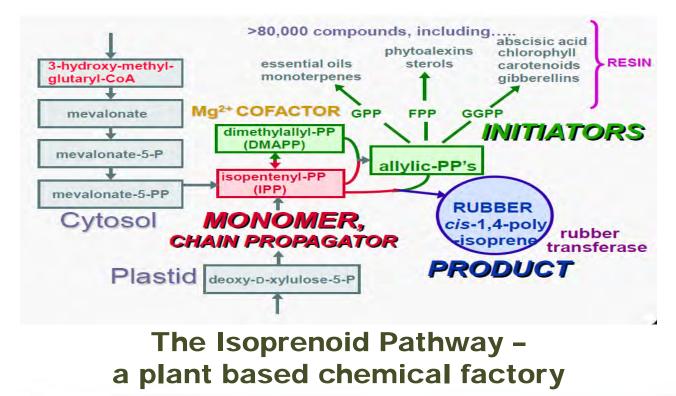
- The 2006 season was excellent for flowering and pollination. There were a high number of bud chilling hours.
- The trees treated in the trial all showed an improvement in fruit retention over the control and this benchmark.
 - The average percent fruit set on all treated almond trees was 28.54%
 - The average percent fruit set on all control almond trees was 19.36%
- The most impressive increase in fruit retention was in the older nemaguard root stock trees where the control had poor fruit retention and retention was increased from approximately 10% to 24%

Desert King & Arysta Life Sciences Plant Extract Anti-Oxidants

Desert Plant Extracts Almond Trials

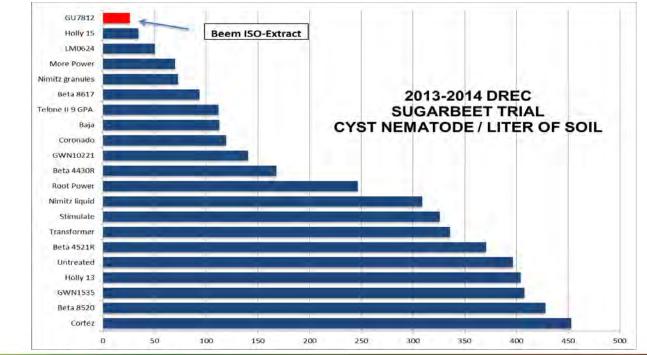
17th Australian Almond Conference November 8th = 10th, 2016

Natural Quillaja saponaria, Yucca shidigera Saponins are natural transporter of Auxins in Phloem and Cytokinins in the Xylem. They are found widespread in Desert Plants. Natural Plant Hormones and Natural Antioxidants. Thus Nature's own Plant Growth Regulators. Like Ocean Sea Plants rich in Isoprenes very usually in Agriulature.



Desert Plant Extracts Almond Trials

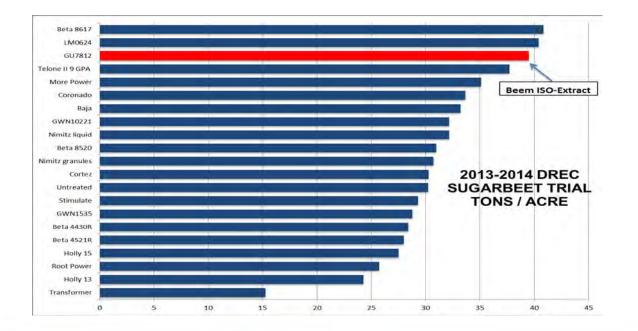
Desert Plant Extracts (Yucca, Quillaja & Guayule = ISO Extract)



Desert Plant Extract on Row Crops

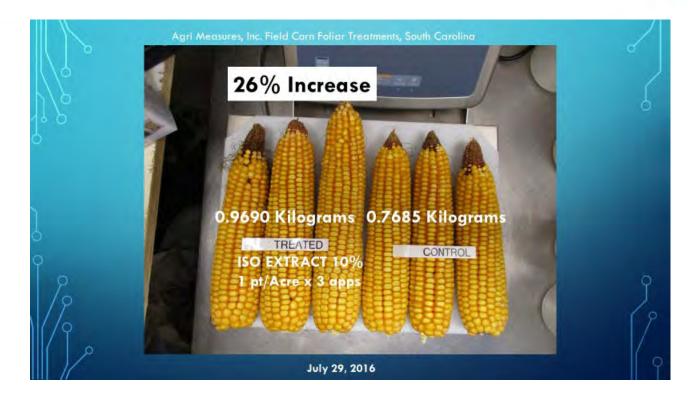
17th Australian Imond Conference November 8th - 10th, 2016

UC Desert Research Center 2013 Holtville, California Dr. Becky Westerdahl, UC Davis Plant Nematologist



Desert Plant Extract on Row Crops

17th Australian Imond Conference November 8th - 10th, 2016

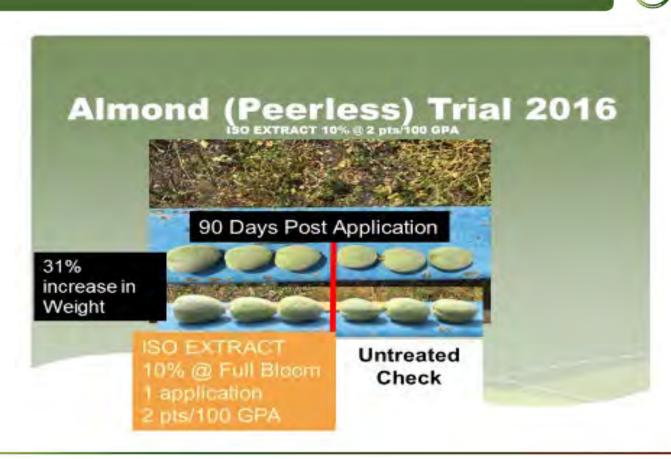

UC Desert Research Center 2013 Holtville, California Dr. Becky Westerdahl, UC Davis Plant Nematologist

Desert Plant Extract on Row Crops

17th Australian Imond Conference November 8th - 10th, 2016

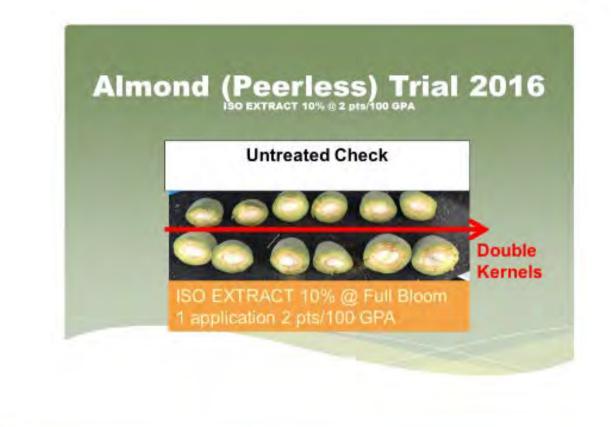
Desert Plant Extract on Fruit Crops

100


17th Australian Imond Conference November 8th - 10th, 2016

Largest Blueberry Grower in Washington State Promoted earlier maturity and market timing. Reported 41% yield increase, Higher BRIX and Improved Berry Color. 12.3% increase in Individual berry weight at harvest time after 3 applications @ 1 pt/Acre starting at petal fall, followed by two weeks later and then two weeks prior to harvest. This is after 2 apps above.

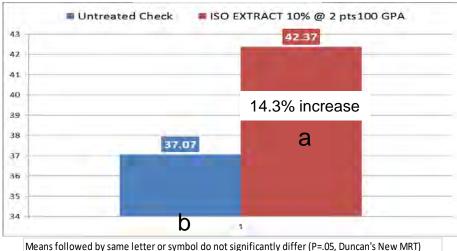
Desert Plant Extract on Almond



17th Australian

Desert Plant Extract on Almond

17th Australian Imond Conference November 8th - 10th, 2016

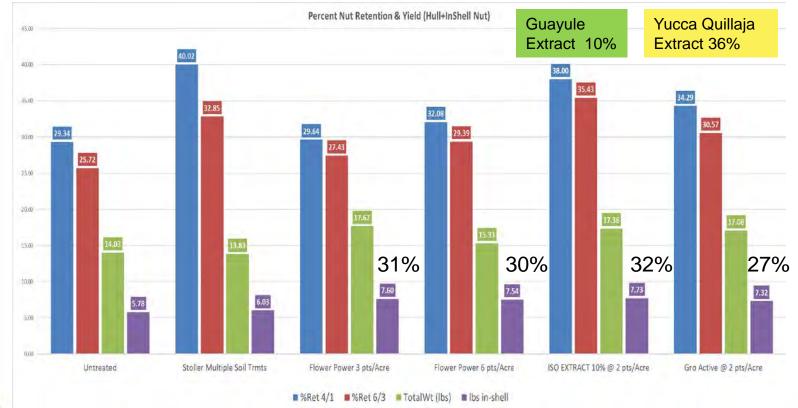


Almond (Peerless) Trial 2016 ISO EXTRACT 10% @ 2 pts/100 GPA

17th Australian Imond Conference ovember 8th - 10th, 2016

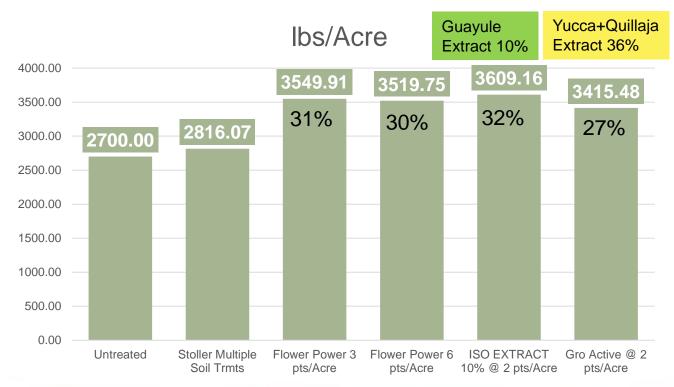
Hull Length mm

Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL


June 3rd Evaluation (25% increase in Nut Retention) June 3rd Evaluation (31% increase in Hull/Nut Weight) Aug 28th Harvest (22% increase in Total Yield)

Non-Pareil Nut Retention & Yield

17th Australian Imond Conference November 8th - 10th, 2016


Non-Pareil Almonds

Non-Pareil Nut Yield In-Shell

Non-Pareil Almonds

Summary for Almond Production

Plant Hormones Are Powerful By Plant Hormone Mimics By Plant Growth Transporters By Anti-Oxidants and Plant Extracts By Selected Blends of Nutrients Yield Increases Range from 7-30%

Thanks and Good Day

