

Fertigation Planning Tool *Currently in Development* Josh Fielke – Industry Development Officer

August 22, 2023

BOARD ALIA

ALMOND FUND

The purpose and background of the tool

- Planning out fertiliser use can be a long and complicated mathematical \bullet process.
- This tool aims to simplify the process while guiding the user with international \bullet research.
- This tool was developed on the back of the 'More for less' topics from the ABA 2022 conference and discussions with the ABA Production Committee.

Why should we try and be more precise?

- We want to know what we are doing and why we are doing it.
- Applying fertiliser to the trees needs is the best possible way to create maximum efficiency within the orchard both sustainably and financially.
- Can affect production and quality if nutrition is undersupplied.

Patrick Brown – Conference 2022, Adelaide

Nitrogen Allocation to Perennial Organs

The end goal

Leaf test results in January! Why N?

- N 2.5% (Multiple sources)
- K Minimum 1.4 but needs more investigation

Roger Duncan, 1999-2001

- Research has indicated that midsummer leaf K% over 1.4% is sufficient.
 - No yield response has been observed with increasing values.
 - Belief of "silent hunger" within orchards leading to application.
 - Been in orchards with 1.8-2.0%, no greater yields than 1.4%.
- Fertility program should match export at 90 kg K2O/ton of kernel removed.

Research trial by R. Duncan, 1999-2001

CT Trial Standards

Table 3: Current and proposed leaf analysis standards for January sampling

Nut	trient	Current Australian	Current Californian	CT Trial Averages (T1,T2)	Grower Survey Averages	Proposed New Australian
N	%	2.0 - 2.5	2.2 - 2.5	2.99	2.71	2.5 - 2.7
Р	%	> 0.1	0.1 - 0.3	0.14	0.14	> 0.1
К	%	1.4 - 1.7	> 1.4	2.76	2.47	2.2 - 2.5
Ca	%	> 2.0	> 2.0	2.42	3.23	> 2.0
Mg	%	> 0.25	> 0.25	0.46	0.68	> 0.40
Na	%	< 0.25	< 0.25	0.07	0.04	< 0.25
CI	%	< 0.3	< 0.3	0.41	0.31	< 0.40
Zn	mg/kg	25 - 30	> 15	335.20	144.23	> 30
Mn	mg/kg	> 20	> 20	162.83	347.16	> 20
Fe	mg/kg	-	-	88.76	183.88	> 50
Cu	mg/kg	> 4	> 4	5.65	18.72	> 4
В	mg/kg	25 - 65	30 - 65	40.25	36.54	30 - 65
S	%	-	-	0.17	0.21	> 0.15

Almond Board of Australia Inc. 7 William Street, PO Box 2246 1 Berri South Australia 5343 P + 61 8 8582 2055 I F + 61 8 8582 3503

The end goal

So how do we get there?

Leaf test results in January! Why N?

- N 2.5% (Multiple sources)
- K Minimum 1.4 but needs more investigation

Roger Duncan, 1999-2001

- Research has indicated that midsummer leaf K% over 1.4% is sufficient.
 - No yield response has been observed with increasing values.
 - Belief of "silent hunger" within orchards leading to application.
 - Been in orchards with 1.8-2.0%, no greater yields than 1.4%.
- Fertility program should match export at 90 kg K2O/ton of kernel removed.

Research trial by R. Duncan, 1999-2001

CT Trial Standards

Table 3: Current and proposed leaf analysis standards for January sampling

Nut	trient	Current Australian	Current Californian	CT Trial Averages (T1,T2)	Grower Survey Averages	Proposed New Australian
N	%	2.0 - 2.5	2.2 - 2.5	2.99	2.71	2.5 - 2.7
Р	%	> 0.1	0.1 - 0.3	0.14	0.14	> 0.1
К	%	1.4 - 1.7	> 1.4	2.76	2.47	2.2 - 2.5
Ca	%	> 2.0	> 2.0	2.42	3.23	> 2.0
Mg	%	> 0.25	> 0.25	0.46	0.68	> 0.40
Na	%	< 0.25	< 0.25	0.07	0.04	< 0.25
CI	%	< 0.3	< 0.3	0.41	0.31	< 0.40
Zn	mg/kg	25 - 30	> 15	335.20	144.23	> 30
Mn	mg/kg	> 20	> 20	162.83	347.16	> 20
Fe	mg/kg	-	-	88.76	183.88	> 50
Cu	mg/kg	> 4	> 4	5.65	18.72	> 4
В	mg/kg	25 - 65	30 - 65	40.25	36.54	30 - 65
S	%	-	-	0.17	0.21	> 0.15

William Street, PO Box 2246 | Berri South Australia 5343

P + 61 8 8582 2055 I F + 61 8 8582 3503

Efficient Nutrient Management Approach -the 4 R's- IPNI

Applying the **Right Rate**

- Match supply with tree demand
 - Determine tree demand
 - Consider all inputs- fertilizer, organic N, water, residual soil N.

At Right Time

- Apply coincident with root uptake.
- Apply coincident with demand

In the **Right Place**

- Ensure delivery to the active roots
- Integrate with irrigation/fertigation praction
- Consider orchard variability.

Using the **Right Source/Right Balance**

• Eliminate limiting nutrients, minimize leaching potential, stabilize N in root profile....

Nitrogen Best Management – Almond Board of California

http://www.ipni.net/4r

K uptake commences a little earlier, stored K pool is smaller than N, but uptake is significantly greater in late fruit development. K storage occurs earlier than N

Nutrients in removed fruit **N = 75 kgs/1000 kernel yield + growth K = 88 kgs/1000 kernel yield + growth** K demand for growth and storage is lower than N.

Potassium Questions:

-K is expensive, are we using it efficiently?
-Is SOP banding the right approach in predominantly micro/drip irrigated orchards

- K is WAY more variable than N!

		Tree and Yield Progression	on wit
Age years	Total Non-Yield Nitrogen Demand leaf + woody biomass	Nitrogen Demand for Yield kernel lbs.	
1	30	0	
2***	55	0	e,
3	65	Expected yield x 0.068	le Tre
4	55	Expected yield x 0.068	Who
5	45	Expected yield x 0.068	ake in
6	40	Expected yield x 0.068	n Upt
7 – 15	40	Expected yield x 0.068	troge
16 – 25	30	Expected yield x 0.068	ioil Ni
			Percent S

Planning with the Fertigation Calculator

- Assists to design a program based on the trees requirements \bullet
- Helps to work out a budget for the program ullet
- Automatically creates mixes to meet the program required for stages \bullet
- **Progress Reports** lacksquare

• Setup blocks, and shifts to get hectares and an application rate

Setup - Orchard Hecatres, blo

Blocks - Used to separate irrigation variations within a shift

Block 1		
Average Tree Age	30	
Dripper Rate	1.31	mm/hr
Dripper Spacing	0.5	m
Row Width	7	m
Drip Lines per row	2	
Number of Rows	44	
Row Length	145	m
Flow Rate	33,431	L/hr
Flow Rate	9.29	L/sec
Hectares	4.47	
Or Over-write		
Flow Rate		L/hr
Hectares		Hecatres

Block 2		
Average Tree Age	20	
Dripper Rate	1.42	mm/hr
Dripper Spacing	0.5	m
Row Width	6.5	m
Drin Lines per row	2	

cks, and shifts						
Pump capacity	20	00	L/sec			
	2017's	2018's	2019's & Sprink	Shift 4	Shift 5	
Block						
Block						
Block						
Block						
Block						Total
Average Tree Age by Hectare	6.0	5.0	4.0	0.0	0.0	
Hecatres	16.7	16.9	4.3	0.0	0.0	38
L/hr	228,259	230,553	87,953	0	0	546,765
% of total flow	42	42	16	0	0	100

Skip block setup - Block Over-wr	ite				
	2017's	2018's	2019's & Sprink	Shift 4	Shift 5
Average Tree Age by Hectare	6	5	4		
Hecatres	16.66	16.86	4.32		
L/hr	228,259	230,553	87,953		

• Setup Fertiliser Products

Fertili	ser Nutritior	nal Breakd	owns								
Fert products	Packaging size	Price Per Kg (\$)	N	Р	к	Са	Fe	В	S	Zn	Acid
Potassium nitrate	1200	40	13.2		38.1						
AN25	1000	30	25								
MAP	1200	15	12	27					18		
Potassium Sulfate	1200	20			41.5						
Calcium Nitrate	1000	35	15.5			19					
Iron							6				

• Setup timing of stages and be guided by expected crop use per hectare

Set Targets - Preset Stage Dates / Seasonal nitrogen use pe	ercentages										Nitr	ogen re	quirements b	yield and a
	Season begins	End of	70% leaf	Spur leaf	60% Kornel fill	Pit	10% hull	Harvest	Pre-	Senescence	Cro	op T	ree Tree N	
		Dormancy	out	expansion	Kerner fill	nardening	spiit		senescence		(Kg/	na) a	age use/ha	
Set dates of where you will reach stage	1/07/2023	30/08	11/09	10/10	16/11	7/12	16/01	16/02	10/05	18/06	3,2	00	6 280	
Californian Nirtogen Use Model - Seasons N% use per stage		0	0	31	24	22	8	7	6	2				
Californian Nitrogen Use Model - Seasons N% cumulative		0	0	31	55	77	85	92	98	100				
Nitrogen use units by stage and calculated crop											Total N Us	e Adj	ustment value %	-
Californian Model - Seasons N units by stage		0	0	87	67	62	22	20	17	6	280		100	
Target Nirtogen units by stage			40	45	66	61	22	19	17	6	276			
Weekly N unit application		0	20	11	13	20	4	5	1	1			Instruction	
													If the estimat Use is not wh	ed Total N at you

Set Targets - Preset Stage Dates / Seasonal nitrogen use pe	ercentages										Nitrog	en requir	ements by	yield and a
	Season begins	End of Dormancy	70% leaf out	Spur leaf expansion	60% Kernel fill	Pit hardening	10% hull split	Harvest	Pre- senescence	Senescence	Crop (kg/ha	Tree) age	Tree N use / ha	
Set dates of where you will reach stage	1/07/2023	30/08	11/09	10/10	16/11	7/12	16/01	16/02	10/05	18/06	3,200	6	280	
Californian Nirtogen Use Model - Seasons N% use per stage		0	0	31	24	22	8	7	6	2				
Californian Nitrogen Use Model - Seasons N% cumulative		0	0	31	55	77	85	92	98	100				
Nitrogen use units by stage and calculated crop											Total N Use	Adjustm	ent value %	
Californian Model - Seasons N units by stage		0	0	87	67	62	22	20	17	6	280	_	100	
Target Nirtogen units by stage			40	45	66	61	22	19	17	6	276			
Weekly N unit application		0	20	11	13	20	4	5	1	1		In	truction	
												lf Us	the estimate	d Total N t you

• Plan your program by elemental percentage or kg/ha and bag ratios

Mature Program																	
				N	Р	К	Ca	Fe	В	S	Zn	Acid					
			Target	272	62	377	25	20				100					
			Planned	277	62	362	25	20	4	64	10	100					
			Planned %	102	100	96	100	100				100					
		-						1	Applic	ation by p	roduct % to a	chieve units					
Product	Mix	element	% of element	OR KG/ha	Kg / ha	% of focus	\$/ha	Bag ratio	N	Р	к	Ca	Fe	в	s	Zn	Acid
Potassium nitrate	1	к	40		396	40	15,832	1.00	52		151						
AN25	1	N	12		131	12	3,917	0.40	33								
MAP	1	Р	100		230	100	3,444	0.58	28	62					41		
Potassium Sulfate	1	К	56		509	56	10,174	1.29			211						
Calcium Nitrate	2	Ca	100		132	100	4,605		20			25					
Iron	2	Fe	50		167	50	0						10				
MX Special	3	Fe	50		752	50	0						10	4	19	10	
UAN	3	N	53		343	53	0		144								
Phos Acid	4	Acid	100		100	100	0										100
Magnesium Sulphate	3	N		30	30	0	0								4		

Allocate you fertilizer based on your Nitrogen goals and seasonal ratios •

			9wee	eks from s season to of Dorm	tart of a ncy					
			Stage	Goal by						
		N	40	ratio	% of goal					
		P	9	0.0	0					
		к	52	0.0	0					
			kg/ha	Ratio	% of					
	Kg Planned	Kg left	Kg/ Hu	Rec Targ						
Potassium nitrate	396	144	57	57	14					
AN25	131	3	19	19	15					
MAP	230	171	33	33	14					
Potassium Sulfate	509	36	73	73	14					
Calcium Nitrate	132	61	19	19	14					
Iron	167	156	11	11	7					
MX Special	752	752		0	0					
UAN	343	293	50	0	15					
Phos Acid	100	95		0	0					
Magnesium Sulphate	30	30		0	0					

Plan is now set, manage your applications

There are 2 options:

1) By calendar amounts

	Start applying in week	Number of applications
End of Dormancy	5	2
70% leaf out	1	1
Spur leaf expansion	1	1
60% Kernel fill	4	2
Pit hardening	1	1
10% hull split	1	1
Harvest	1	1
Pre-senescence	1	1
Senescence	1	1

Stage	Year begins								
Date	1/07/2023	8/07/2023	15/07/2023	22/07/2023	29/07/2023	5/08/2023	12/08/2023	19/08/2023	
Potassium nitrate					955		955		
AN25					318		318		
MAP					553		553		
Potassium Sulfate					1223		1223		
Calcium Nitrate					318		318		
Iron					184		184		
MX Special									
UAN					838		838		

2) By tank mix

	٦	Fank Mixes le	eft to apply t	:o	
		End of D	ormancy		
General Mix	Calcium Nitrate	Potassium Mix			
1.0	0.3	4.6			

Application stage	L to apply stage Nitrogen by mix 12,425 12,575	L to applied staged Phosphorus by mix	L to apply staged Potassium by mix	Week beginning 1/07/2023
End of Dormancy End of Dormancy	12,425 12,575			1/07/2023
End of Dormancy	12,575			1/07/2023
				1/0//2023

Almond Board of Australia

1801 Bookpurong Road, Loxton, S.A. 5333

jfielke@australianalmonds.com.au +61(4) 08 031 991

ABN 31 709 079 099

