

Paul Petrie, Nigel Fleming, Kavitha Shanmugam and Tim Pitt Almond Board of Australia R&D Forum 2023

Increasing interest in compost

- Fertilizer savings
- Improve establishment
- Manage waste streams
- Carbon farming
- Whole orchard recycling
- Invest for high value crop

What about the orchard floor?

- Application at establishment
- Injection technology
- Doesn't interfere with harvest

AgriFutures scoping study

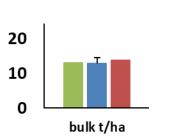
- Single season
- Existing experiments and commercial orchard
- Focus on trial at the Almond Centre of Excellence

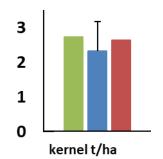
- Tree size and yield
- Tree nutrition
- Soil water nitrogen
- Soil fertility
 - Sampling strategy

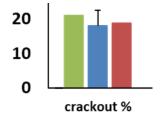
- Long term trial established 2018
- Standard fertigation program
- Carina on Garnem

- Control no amendment
- Compost at establishment (Peats)
 - Commercial product @ 50t/ha
 - Equivalent 350 t/ha to application strip

- Long term trial established 2018
 - Annual applications of 10t/ha (Peats)
 - Incorporated in year 1
 - Then banded adjacent to the drip line
 - Total 50 t/ha prior to sampling season







Compost and yield

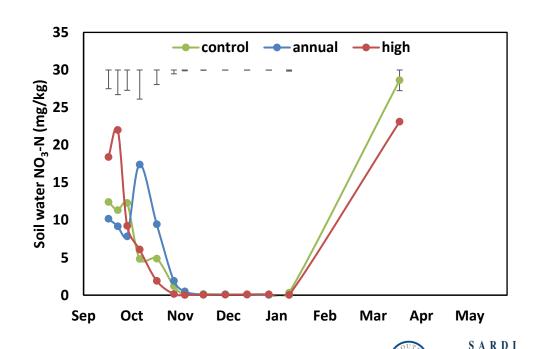
- ACE trial
- Limited effect
 - Bulk yield
 - Kernel
 - Crackout
- Similar in commercial orchard

Tree size

ACE trial

- No effect on tree height
- Small increase in trunk diameter
- Compost applied at planting

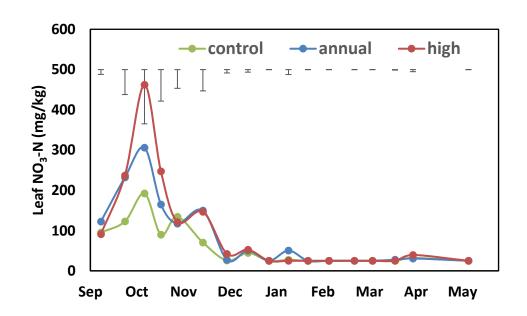
Treatment	Tree height (m)	Butt diameter (mm)
Control	3.61	166
Annual	3.63	165
High	3.58	175
p value	0.78	0.06



Compost and tree nutrition - ACE

- Soil water extractors
- 30cm depth

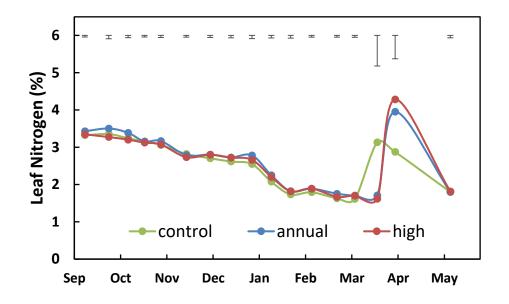
- Soil water nitrate
 - Establishment and annual
 - Potentially higher
 - Early season



Uniformly low at depth

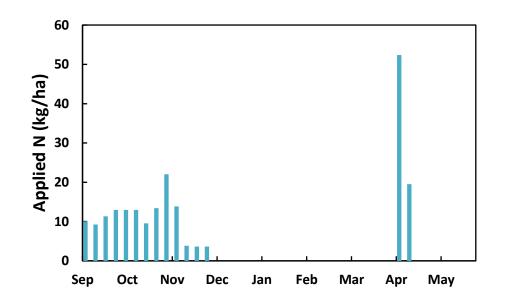
Compost and tree nutrition - ACE

- Regular leaf samples
- Leaf nitrate


- Leaf nitrate
 - Establishment and annual
 - Higher early season

Compost and tree nutrition - ACE

- Regular leaf samples
- **Limited effect**
 - Leaf N



Fertigation schedule - ACE

- Approximately 222 kg/ha N
- Trees needs well met

 Limited opportunity for response to compost

- Tree line -
 - Between the trees
 - No direct irrigation
 - **Residual compost**

- Dripper zone -
 - Fertigation
 - Drip line is missing

SARDI

- Amended strip
 - Annual compost application
 - Adjacent to drip line
 - Narrow strip

SARDI

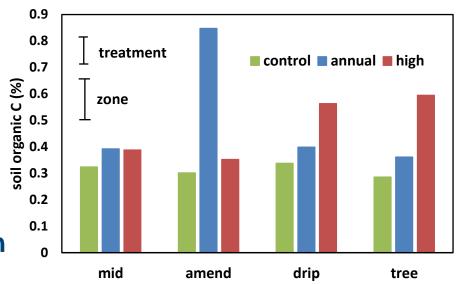
- Mid row -
 - Between the rows
 - No inputs

SARDI

Soil sampling pre harvest

- No fertigation
- Distinct and very different soil zones (strips)
- Very difficult to sample two methods
- Point sampling (auger)
 - Four zones
- Trench sampling (chain trencher)
 - Three zones
 - Amended and drip zones combined

Soil samples

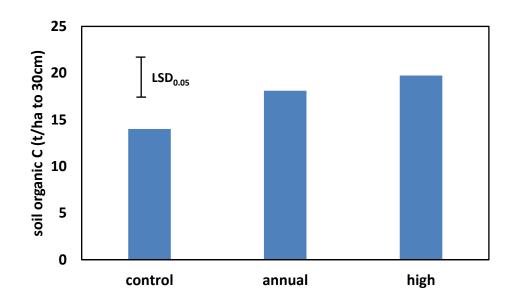


Soil organic carbon – point samples - ACE

Compost increased soil carbon

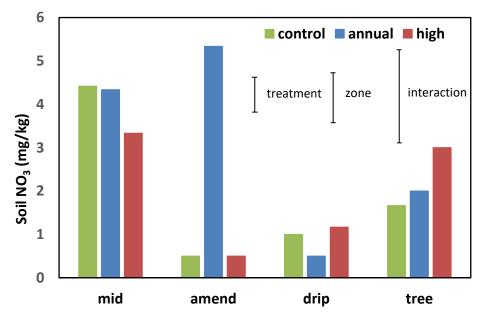
Annual application in amended zone

- **Establishment application in** the drip and tree line
- **Maintained for 5 years**
- Whole orchard recycling



Soil organic carbon stocks - ACE

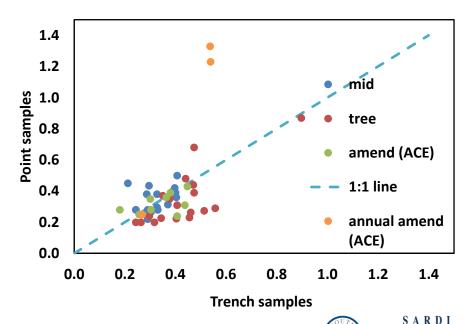
- **Compost increased soil** carbon
- **Both application methods**
- **Trench samples**
- Similar for point samples



Soil nitrate – point samples - ACE

- Compost increased soil NO₃
- Annual application in amended zone
- Establishment application in the tree line

Elevated in the mid-row



Soil Carbon – trench vs point samples - ACE

 Most trench samples lower than point samples

- Annual amendment higher than equivalent trench zone
- Except where the sample missed

 Challenges for tracking soil carbon

Conclusions

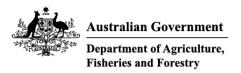
- Mechanics for regular compost application well developed
- Limited compost impact on yield and tree growth
 - Well fertilised system

- Increased nitrate availability
 - Soil, soil water and leaf

Conclusions

- Potential for carbon accumulation
 - Establishment and annual applications
 - Implications for WOR
 - Manage a significant waste stream
 - Monitoring soil C may be difficult

Acknowledgements



Using compost to improve nitrogen use efficiency and productivity of Almonds

High quality natural products

