Future-proofing almonds:
Breeding success together

Cassandra Collins

History

- Started in 1997
- Funding from HAL/HIA/ARC
- Six new cultivars released in 2016 and 2017, Maxima, Mira, Carina, Rhea, Vela and Capella

Funding and current team

Hort Innovation

Cassandra Collins

Natalia Caliani

Annette James

Karin Andraschko-Schlosser

Virajinee Nayanathara Don Bulathsinhalage

Industry and breeding challenges

Industry challenges

- Profitability and market trends
- Water scarcity and consumption
- Climate change vulnerability
- Pest and disease pressure
- Pollination shortages
- Waste products

Breeding challenges

- Consistent yield and nut quality
- Tree health
- Grower adoption
- Processing efficiencies
- Consumer acceptance

Breeding targets

- Self-fertile
- High productivity
- High flower density
- Sweet kernel, large kernel, thin skin, light colour
- Soft semihard shell
- High crack out and shelling
- Tight shell seal
- Tree habit
- Disease and drought tolerance

Breeding approach

Objective: to breed improved cultivars with superior kernel quality, self-fertility, disease resistance, high productivity.

- Classical breeding using local and imported material
- Waite almond germplasm collection, Lindsay Point & ACE
- Primary evaluation on nut & kernel characteristics
- Secondary and tertiary evaluation on productivity, nut quality, growth habit, plant health and long-term yields

Progress to date

- 84 parent cultivars used
- 315 different crosses achieved
- 44,000 progeny produced in 16 years
- 37 cultivars imported since 1997
- 60+ superior selections to date
- Secondary and tertiary evaluations blocks established at ACE
- Commercial trials
- One new variety going through PBR process AuroraB

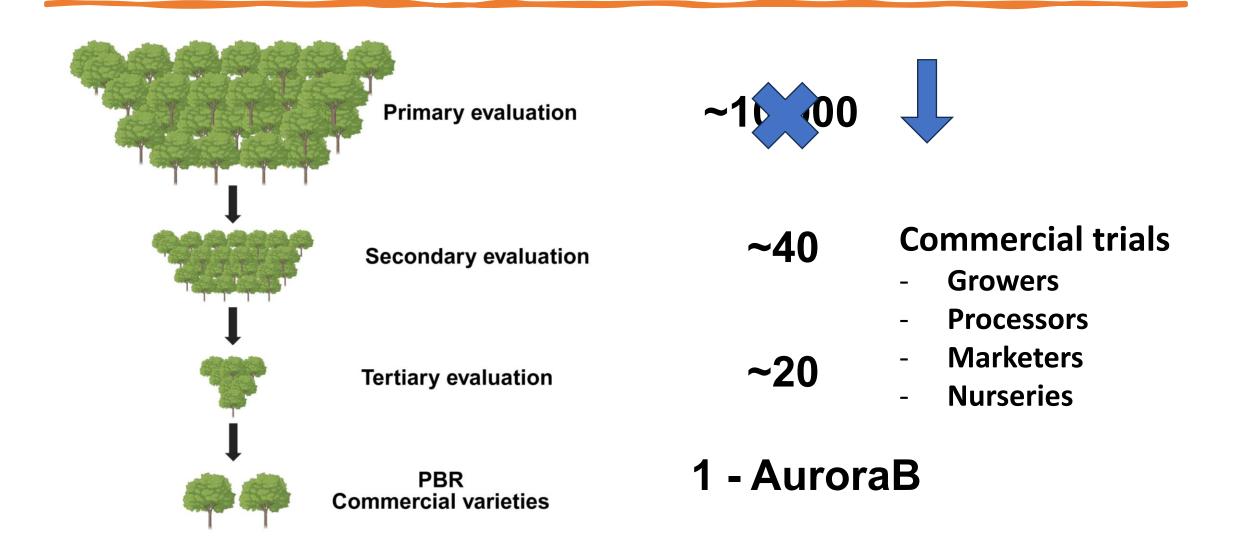
Current breeding approach

Photo credits – Karin Andraschko-Schlosser

Genetics for Next Generation Orchards

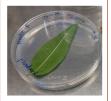
- Almond flowering and dormancy traits WSU better understand flowering and dormancy traits to improve adaptability and ensure more consistent, higher yields.
- Al and Robotics QUT assess flowering and other key traits, improving data recording efficiency and selection accuracy.
- Multi-trait selection AbacusBio and UQ prioritise key traits and refine breeding focus to improve selection efficiency.
- **Genomic prediction/pangenome MU –** *implement genomic markers and insights to enhance prediction accuracy*





Future breeding approach

Bacterial Spot in Almond

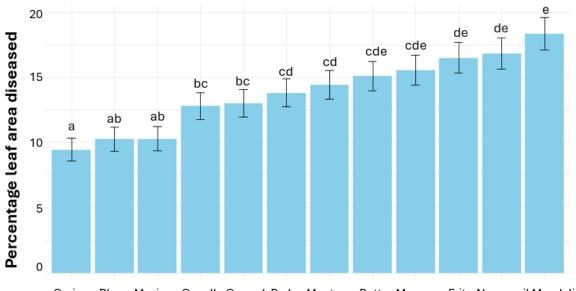


- Artificial inoculation methods for accurate phenotyping of this disease
- RGB image analysis for rapid phenotyping
- Reliable markers for disease identification and levels of copper resistance

Method 1 Needleless syringe method

hod 1
dleless
ringe
method

Method 3
Detached
shoot
method



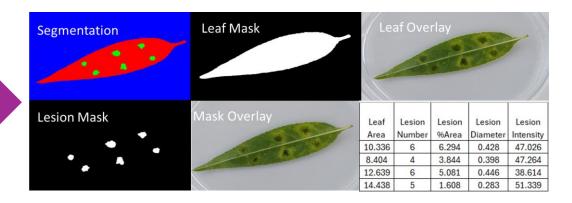
Method 4
Attached
shoot
method

Method 5
Spray
method

Carina Rhea Maxima Capella Carmel Padre Monterey Butte Marcona Fritz Nonpareil Mandaline

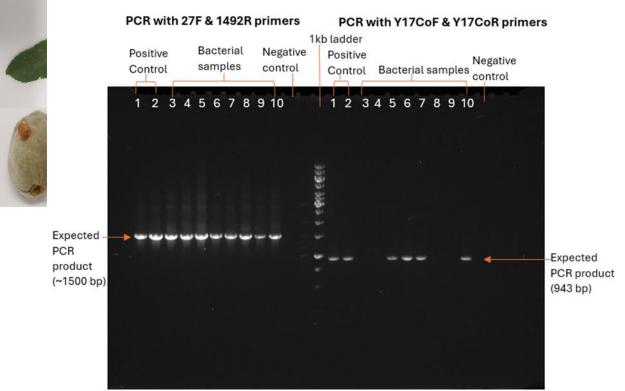
Variety

Bacterial Spot in Almond



- Artificial inoculation methods for accurate phenotyping of this disease
- RGB image analysis for rapid phenotyping
- Reliable markers for disease identification and levels of copper resistance

Image Acquisition


Image Preprocessing Image Segmentation Feature
Extraction
and Analysis

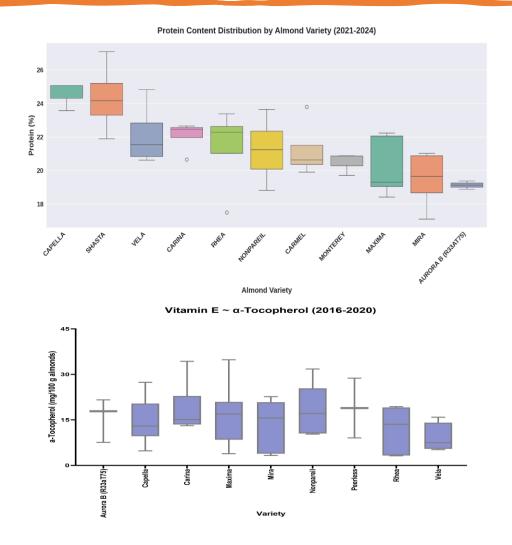
Bacterial Spot in Almond

Screening of bacterial isolates

accurate phenotyping of this disease notyping

tification and levels of copper resistance

Growth at different concentrations of copper			
Control	0.4 mM	0.8 mM	1.2 mM
+	+	0	0


Nutritional and flavour benefits

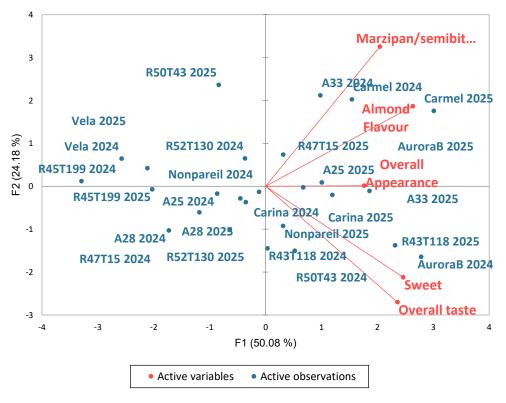


Photo credit Natalia Caliani

Almonds are packed with healthy compounds, including unsaturated fats, fibre, protein, vitamins, minerals, and potent antioxidants.

Biplot (axes F1 and F2: 74.26 %)

Next Steps

 Compare and assess past selections to find ways to speed up breeding and improve efficiency.

 Develop new varieties that meet changing industry needs.

 Share results and work together — keeping all industry stakeholders informed, involved, and part of the process.

Acknowledgements

University of Adelaide

 Natalia Caliani, Annette James, Karin Andraschko-Schlosser, Virajinee N.D. Bulathsinhalage, Eileen Scott, Diane Mather, Bryant Roberts, Dimitra Capone

Almond Board of Australia

- Deidre Jaensch, Josh Fielke, Peter Jealous, Anthony Wachtel, Anna and the rest of the team at ACE
- Plant Improvement Committee

Dr Tonya Wiechel, Agriculture Victoria

Tony Speirs & Andrew Lacey

Genetics for Next Generation Orchards Team

Growers participating in commercial trials

